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Abstract:  Making use of conformally flattened structure of alpha-geometry, we have shown that the 
simple and computationally efficient algorithm can be derived to construct the alpha-Voronoi 
diagrams on the space of discrete probability distributions. Geometry for q-exponential families, 
which is related with alpha-geometry, and its statistical applications are also studied. In addition we 
have studied conformal flatness of level surfaces in Hessian domains. Especially we have also studied 
harmonic maps between level surfaces of Hessian domains, relating with conformally flat structure. 
 
Introduction:  Along the line of geometric study of generalized entropies and Legendre structures, 
we have elucidated a relation between the alpha-geometry and the escort probability, which is an 
important tool in the arguments of Tsallis’s generalized entropy, in the following paper: A. Ohara, H. 
Matsuzoe and S. Amari, A dually flat structure on the space of escort distributions, 2010 J. Phys.: 
Conf. Ser. 201 012012 (http://iopscience.iop.org/1742-6596/201/1/012012). There we have observed 
that conformally flattening of the alpha-geometry introduces the escort probabilities as affine 
coordinates in the resultant dually flat geometry on the space of probability distributions. While this 
result is still purely mathematical and the implications from viewpoints of statistical physics are 
necessary, we have found an interesting application to information science. 

A q-exponential family is a set of probability distributions, which is a natural generalization 
of the standard exponential family, and is related to many physical phenomena called “complex 
systems” that obey power-laws. A q-exponential family has geometric structure of constant curvature 
and a dually flat structure simultaneously. To describe these relations, we introduce a conformal 
transformation on statistical manifolds and have successfully clarified them in addition to obtaining 
several important properties. As applications of geometry for q-exponential families, a geometric 
generalization of statistical inference are also proposed and studied. 

We have also studied Hessian domains, which are flat statistical manifolds typically. It is 
known that level surfaces of a Hessian domain are 1-conformally flat statistical submanifolds. We 
showed conditions that 1-conformally flat statistical leaves of a foliation can be realized as level 
surfaces of their common Hessian domain conversely. In addition we study harmonic maps between 
level surfaces of a Hessian domain with 1-, (-1)-, and, in general, alpha-conformally flat connections, 
respectively. Harmonic maps are generalization of critical points of a function, and have been 
researched in terms of geometry, physics, and so on. For example H. Shima gave conditions for 
harmonicity of gradient mappings of level surfaces on a Hessian domain. However they investigated 
harmonic maps on level surfaces into a dual affine space, not into other level surfaces. K. Nomizu and 
T. Sasaki calculated the Laplacian of centro-affine immersions into an affine space, but we can see no 
discription of harmonic maps between two centro-affine hypersurfaces. Then we started investigation 
of harmonic maps between two level surfaces. 
 
 
Experiment:  Nothing 
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Results and Discussion:  We demonstrate that escort probabilities with the new dually flat structure 
admits a simple algorithm to compute Voronoi diagrams and centroids with respect to 
alpha-divergences, which are one-parameter distance-like functions representing discrepancy between 
two probability distributions. The Voronoi diagrams on the space of probability distributions with the 
Kullback-Leibler, or Bregman divergences have been recognized as important tools for various 
statistical modeling problems involving pattern classification, clustering, likelihood ratio test and so 
on [2].  

The largest advantage to take account of alpha-divergences is their invariance under 
transformations by sufficient statistics studied by Cencov, which is a significant requirement for those 
statistical applications. In computational aspect, the conformal flattening of the alpha-geometry 
enables us to invoke the standard algorithm by Edelsbruner using a potential function and an upper 
envelop of hyperplanes with the escort probabilities as coordinates [6]. 

We elaborate the relations of two structures on q-exponential family: geometric structure of 
constant curvature is naturally translated to dually flat structure by conformal transformation. This 
relation provides us several important geometric properties. One of such examples is a fact that the 
q-Pythagorean theorem holds among probability distributions in this family [1]. As a simple 
application of the theorem, we show that the q-version of the maximum entropy theorem is naturally 
induced.  

We have also applied obtained mathematical results to extension of statistical inference 
technique. First we show that the maximizer of the q-escort distribution is a Bayesian MAP 
(Maximum A posteriori Probability) estimator [1]. Second, we propose maximum q-likelihood 
estimation and geometrically characterize the solution [3]. 

On conformal flatness of level surfaces in Hessian domains, we obtain the following result 
[4]. In previous paper we show that a 1-conformally flat statistical manifold can be locally realized as 
a submanifold of a flat statistical manifold, constructing a level surface of a Hessian domain (Uohashi, 
Ohara, Fujii; 2000). However we proved realization of only "a" 1-conformally flat statistical manifold. 
In this study we give conditions for realization of 1-conformally flat statistical manifolds as level 
surfaces of their common Hessian domain. If embedding a 1-conformally flat statistical model into a 
higher dimensional model, we may be able to use our result. 

To construct harmonic maps, we made mappings from a level surface to another level 
surface on a Hessian domain by conformal transformation [5]. Next we defined alpha-structure on 
level surfaces and calculated “variations of mappings” for each alpha-parameters. A harmonic map 
makes the variation of the mapping zero. So we show a condition for the zero variation by an equation 
with n and a parameter “alpha”, where n is dimension of level surfaces. It is a problem to find 
relations with these harmonic maps and phenomena on statistics, physics, and so on. 
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this work. 
 
 

 
1. Shun-ichi Amari and Atsumi Ohara, Geometry of q-Exponential Family of Probability 

Distributions, Entropy, Vol.13, 1170-1185 (2011). 
2. Atsumi Ohara, Hiroshi Matsuzoe and Shun-ichi Amari, Conformal geometry of escort 

probabilities and its application to Voronoi partitions, International Conference on Statistical 
Physics, Larnaca (Cyprus), July 11-15 2011. Extended version of this paper appeared as Atsumi 
Ohara, Hiroshi Matsuzoe and Shun-ichi Amari, Dually flat structure with escort probability and 
its application to alpha-volonoi diagrams, arXive 1010.4965 (2010) 

3. Hiroshi Matsuzoe and Atsumi Ohara, Geometry for q-exponential families, Recent Progress in 
Differential Geometry and Its Related Fields: Proceedings of the 2nd International Colloquium on 
Differential Geometry and its Related Fields, World Scientific Publ., (2011), 55-71. 

4. Keiko Uohashi, A Hessian domain constructed with a foliation by 1-conformally flat statistical 
manifolds, submitted. 

5. Keiko Uohashi, Harmonic maps relative to alpha-connections on statistical manifolds, Applied 
Sciences, Vol.14, 82-88 (2012).  



6. Atsumi Ohara, Hiroshi Matsuzoe and Shun-ichi Amari, Conformal Geometry of Escort 
Probability and its Applications, Modern Physics Letters B, Vol. 26, No. 10, 1250063(14 pages) 
(2012). 

 
 
Attachments:  Publications listed above. 
 



Entropy 2011, 13, 1170-1185; doi:10.3390/e13061170
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Geometry of q-Exponential Family of Probability Distributions
Shun-ichi Amari 1,� and Atsumi Ohara 2,�

1 Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Hirosawa 2-1, Wako-shi,

Saitama 351-0198, Japan
2 Department of Electrical and Electronics Engineering, Graduate School of Engineering, University of

Fukui, Bunkyo 3-9-1, Fukui-shi, Fukui 910-8507, Japan

� Authors to whom correspondence should be addressed; E-Mails: amari@brain.riken.jp (S.-i.A.);

ohara@fuee.u-fukui.ac.jp (A.O.).

Received: 11 February 2011; in revised form: 1 June 2011 / Accepted: 2 June 2011 /
Published: 14 June 2011

Abstract: The Gibbs distribution of statistical physics is an exponential family of probability

distributions, which has a mathematical basis of duality in the form of the Legendre

transformation. Recent studies of complex systems have found lots of distributions obeying

the power law rather than the standard Gibbs type distributions. The Tsallis q-entropy

is a typical example capturing such phenomena. We treat the q-Gibbs distribution or

the q-exponential family by generalizing the exponential function to the q-family of

power functions, which is useful for studying various complex or non-standard physical

phenomena. We give a new mathematical structure to the q-exponential family different from

those previously given. It has a dually flat geometrical structure derived from the Legendre

transformation and the conformal geometry is useful for understanding it. The q-version of

the maximum entropy theorem is naturally induced from the q-Pythagorean theorem. We

also show that the maximizer of the q-escort distribution is a Bayesian MAP (Maximum A

posteriori Probability) estimator.

Keywords: q-exponential family; q-entropy; information geometry; q-Pythagorean theorem;

q-Max-Ent theorem; conformal transformation
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1. Introduction

Statistical physics is founded on the Gibbs distribution for microstates, which forms an exponential

family of probability distributions known in statistics. Important macro-quantities such as energy,

entropy, free energy, etc. are connected with it. However, recent studies show that there are non-standard

complex systems which are subject to the power law instead of the exponential law of the Gibbs type

distributions. See [1,2] as well as extensive literatures cited in them.

Tsallis [3] defined the q-entropy to elucidate various physical phenomena of this type, followed

by many related research works on this subject (see, [1]). The concept of the q-Gibbs distribution

or q-exponential family of probability distributions is naturally induced from this framework (see

also [4]). However, its mathematical structure has not yet been explored enough [2,5,6], while the

Gibbs type distribution has been studied well as the exponential family of distributions [7]. We need a

mathematical (geometrical) foundation to study the properties of the q-exponential family. This paper

presents a geometrical foundation for the q-exponential family based on information geometry [8], giving

geometrical definitions of the q-potential function, q-entropy and q-divergence in a unified way.

We define the q-geometrical structure consisting of a Riemannian metric and a pair of dual affine

connections. By using this framework, we prove that a family of q-exponential distributions is dually

flat, in which the q-Pythagorean theorem holds. This naturally induces the corresponding q-maximum

entropy theorem similarly to the case of the Tsallis q-entropy [1,9,10]. The q-structure is ubiquitous

since the family Sn of all discrete probability distributions can always be endowed with the structure

of the q-exponential family for arbitrary q. It is possible to generalize the q-structure to any family

of probability distributions. Further, it has a close relation with the α-geometry [8], which is one

of information geometric structure of constant curvature. This new dually flat structure, different

from the old one given rise to from the invariancy in information geometry, can be also obtained

by conformal flattening of the α-geometry [11,12], using a technique in the conformal and projective

geometry [13–15].

The present framework prepares mathematical tools for analyzing physical phenomena subject to the

power law. The Legendre transformation again plays a fundamental role for deriving the geometrical

dual structure. There exist lots of applications of q-geometry to information theory ([16] and others) and

statistics, including Bayes q-statistics.

It is possible to generalize our framework to a more general non-linear family of distributions by

using a positive convex function instead of q-exponential function (See [2,17]). A good example is the

κ-exponential family [18–20], but we do not state it here.

2. q-Gibbs or q-Exponential Family of Distributions

2.1. q-Logarithm and q-Exponential Function

It is the first step to generalize the logarithm and exponential functions to include a family of power

functions, where the logarithm and exponential functions are included as the limiting case [1,5,21]. This
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was also used for defining the α-family of distributions in information geometry [8]. We define the

q-logarithm by

logq(u) =
1

1− q

(
u1−q − 1

)
, u > 0 (1)

and its inverse function, the q-exponential, by

expq(u) = {1 + (1− q)u} 1
1−q , u > −1/(1− q) (2)

for a positive q with q �= 1. The limiting case q → 1 reduces to

log1(u) = log u (3)

exp1(u) = exp u (4)

so that logq and expq are defined for q > 0.

2.2. q-Exponential Family

The standard form of an exponential family of distributions is written as

p(x,θ) = exp
{∑

θixi − ψ(θ)
}

(5)

with respect to an adequate measure μ(x), where x = (x1, · · · , xn) is a set of random variables and

θ = (θ1, · · · , θn) are the canonical parameters to describe the underlying system. The Gibbs distribution

is of this type. Here, ψ(θ) is called the free energy, which is the cumulant generating function.

The power version of the Gibbs distribution is written as

p(x,θ) = expq {θ · x− ψq(θ)} (6)

logq {p(x,θ)} = θ · x− ψq(θ) (7)

where θ · x =
∑

θixi. This is the q-Gibbs distribution or q-exponential family [4], which we denote by

S, where the domain of x is restricted such that p(x,θ) > 0 holds. The function ψq(θ), called the q-free

energy or q-potential function, is determined from the normalization condition:∫
expq {θ · x− ψq(θ)} dx = 1 (8)

where we replaced dμ(x) by dx for brevity’s sake. The function ψq depends on q, but we hereafter

neglect suffix q in most cases. Research on the q-exponential family can be found, for example, in

[2,4,19]. The q-Gaussian distribution is given by

p(x, μ, σ) = expq

{
−(x− μ)2

2σ2
− ψ(μ, σ)

}
(9)

and is studied in [22–25] in detail. Here, we need to introduce a vector random variable x = (x, x2) and

a new parameter θ, which is a vector-valued function of μ and σ, to represent it in the standard form (7).

It is an interesting observation that the domain of x in the q-Gaussian case depends on q if 0 < q < 1.

Hence, that q- and q′-Gaussian are in general not absolutely continuous when q �= q′.
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It should be remarked that the q-exponential family itself is the same as the α-family of distributions

in information geometry [8]. Here, we introduce a different geometrical structure, generalizing the result

of [24].

We mainly use the family Sn of discrete distributions over (n + 1) elements X = {x0, x1, · · · , xn},

although we can easily extend the results to the case of continuous random variables. Here, random

variable x takes values over X . We also treat the case of 0 < q < 1, and the limiting cases of q = 0 or 1

give the well-known ones.

Let us put pi = Prob {x = xi} and denote the probability distribution by vector p = (p0, p1, · · · , pn),
where

n∑
i=1

pi = 1 (10)

The probability of x is also written as

p(x) =
n∑

i=0

piδi(x) (11)

where

δi(x) =

{
1, x = xi,

0, otherwise.
(12)

Theorem 1 The family Sn of discrete probability distributions has the structure of a q-exponential

family for any q.

Proof We take logq of distribution p(x) of (11). For any function f(u), we have

f

{
n∑

i=1

piδi(x)

}
=

n∑
i=0

f (pi) δi(x) (13)

By taking

δ0(x) = 1−
n∑

i=1

δi(x) (14)

into account, discrete distribution (11) can be rewritten in the form (8) as

logq p(x) =
1

1− q

{
n∑

i=1

(
p1−q
i − p1−q

0

)
δi(x) + p1−q

0 − 1

}
(15)

where

p0 = 1−
n∑

i=1

pi (16)

is treated as a function of (p1, · · · , pn). Hence, Sn is q-exponential family (6) for any q, with the following

q-canonical parameters, random variables and q-potential function:

θi =
1

1− q

(
p1−q
i − p1−q

0

)
, i = 1, · · · , n (17)

xi = δi(x) (18)

ψ(θ) = − logq p0 (19)
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This completes the proof. �

Note that the q-potential ψ(θ) and the canonical parameter θ depend on q as is seen in (17) and (19).

It should also be remarked that Theorem 1 does not contradict to the theorem 1 in [19] stating that a

parametrized family of probability distributions can belong to at most one q-exponential family. The

author considers an m-dimensional parametrized submanifold in Sn with m < n where the canonical

parameter depending on q is given via the variational principle. Therefore, by denoting the q-canonical

parameter by θq ∈ Rm, we can restate his theorem in terms of geometry that a linear submanifold

parametrized by θq ∈ Rm is not a linear submanifold parametrized by θq′ ∈ Rm when q′ �= q. On the

other hand, the present theorem states that there exists the q-canonical parameter θq ∈ Rn on whole Sn

for any q and the manifold has linear structure with respect to any θq. This is a surprising new finding.

2.3. q-Potential Function

We study the q-geometrical structure of S. The q-log-likelihood is a linear form defined by

lq(x,θ) = logq p(x,θ) =
n∑

i=1

θixi − ψ(θ) (20)

By differentiating it with respect to θi, with the abbreviated notation ∂i =
∂
∂θi

, we have

∂ilq(x,θ) = xi − ∂iψ(θ) (21)

∂i∂jlq(x,θ) = −∂i∂jψ(θ) (22)

From this we have the following important theorem.

Theorem 2 The q-free energy or q-potential ψq(θ) is a convex function of θq.

Proof We omit the suffix q for simplicity’s sake. We have

∂ip(x,θ) = p(x,θ)q (xi − ∂iψ) (23)

∂i∂jp(x,θ) = qp(x,θ)2q−1 (xi − ∂iψ) (xj − ∂jψ)− p(x,θ)q∂i∂jψ (24)

The following identities hold: ∫
∂ip(x,θ)dx = ∂i

∫
p(x,θ)dx = 0 (25)∫

∂i∂jp(x,θ)dx = ∂i∂j

∫
p(x,θ)dx = 0 (26)

Here, we define an important functional

hq(θ) = hq[p(x,θ)] =

∫
p(x,θ)qdx (27)

in particular for discrete Sn,

hq(p) =
n∑

i=0

pqi (28)
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for 0 < q < 1. This function plays a key role in the following. From (25) and (26), by using (23) and

(24), we have

∂iψ(θ) =
1

hq(θ)

∫
xip(x,θ)

qdx (29)

∂i∂jψ(θ) =
q

hq(θ)

∫
(xi − ∂iψ) (xj − ∂jψ) p(x,θ)

2q−1dx (30)

The latter shows that ∂i∂jψ(θ) is positive-definite, and hence ψ is convex. �

2.4. q-Divergence

A convex function ψ(θ) makes it possible to define a divergence of the Bregman-type between two

probability distributions p (x,θ1) and p (x,θ2) [8,26,27]. It is given by using the gradient ∇ = ∂/∂θ,

Dq [p (x,θ1) : p (x,θ2)] =

ψ (θ2)− ψ (θ1)−∇ψ (θ1) · (θ2 − θ1) (31)

satisfying the non-negativity condition

Dq [p (x,θ1) : p (x,θ2)] ≥ 0 (32)

with equality when and only when θ1 = θ2. This gives a q-divergence in Sn different from the

invariant divergence of Sn [28]. The divergence is canonical in the sense that it is uniquely determined

in accordance with dually flat structure of q-exponential family in Sections 3 and 4. The canonical

divergence is different from the α-divergence or conventional Tsallis relative entropy used in information

geometry (See the discussion in the end of this subsection). Note that it is used in [16].

Theorem 3 For two discrete distributions p(x) = p and r(x) = r, the q-divergence is given by

Dq[p : r] =
1

(1− q)hq(p)

(
1−

n∑
i=0

pqi r
1−q
i

)
(33)

Proof The potentials are, from (19),

ψ(p) = − logq p0, ψ(r) = − logq r0 (34)

for p and r. We need to calculate ∇ψ(θ) given in (29). In our case, xi = δi(x) and hence

∂iψ =
pqi

hq(p)
(35)

By using this and (17), we obtain (33). �

It is useful to consider a related probability distribution,

p̂q(x) =
1

hq[p(x)]
p(x)q (36)
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for defining the q-expectation. This is called the q-escort probability distribution [1,4,29]. Introducing

the q-expectation of random variable f(x) by

Ep̂[f(x)] =
1

hq[p(x)]

∫
p(x)qf(x)dx (37)

we can rewrite the q-divergence (31) for p(x), r(x) ∈ S as

Dq [p(x) : r(x)] = Ep̂

[
logq p(x)− logq r(x)

]
(38)

because of the relations (20) and (29). The expression (38) is also valid on the exterior of S × S when it

is integrable. This is different from the definition of the Tsallis relative entropy [30,31]

D̃q[p(x) : r(x)] =
1

1− q

(
1−

∫
p(x)qr(x)1−qdx

)
(39)

which is equal to the well-known α-divergence up to a constant factor where α = 1 − 2q (see [8,28]),

satisfying the invariance criterion. We have

Dq[p(x) : r(x)] =
1

hq[p(x)]
D̃q[p(x) : r(x)] (40)

This is a conformal transformation of divergence, as we see in the following. See also the derivation

based on affine differential geometry [12].

2.5. q-Riemannian Metric

When θ2 is infinitesimally close to θ1, by putting θ1 = θ, θ2 = θ+dθ and using the Taylor expansion,

we have

Dq [p(x,θ) : p(x,θ + dθ)] =
∑

gqij(θ)dθ
idθj (41)

where

g
(q)
ij = ∂i∂jψ(θ) (42)

is a positive-definite matrix. We call
[
g
(q)
ij (θ)

]
the q-Fisher information matrix. When q = 1, this reduces

to the ordinary Fisher information matrix given by

g
(1)
ij (θ) = gFij(θ) = E [∂i log p(x,θ)∂j log p(x,θ)] (43)

The positive-definite matrix g
(q)
ij (θ) defines a Riemannian metric on Sn, giving it the q-Riemannian

structure.

When a metric tensor gij(θ) is transformed to

g̃ij(θ) = σ(θ)gij(θ) (44)

by a positive function σ(θ), we call it a conformal transformation. See, e.g., [13–15,32]. The conformal

transformation of divergence induces that of the Riemannian metric.
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Theorem 4 The q-Fisher information metric is given by a conformal transformation of the Fisher

information metric gFij as

g
(q)
ij (θ) =

q

hq(θ)
gFij(θ) (45)

Proof The q-metric is derived from the Taylor expansion of Dq [p : p+ dp]. We have

Dq [p(x,θ) : p(x,θ + dθ)] =
1

(1− q)hq(θ)

{
1−

∫
p(x,θ)qp(x,θ + dθ)1−qdx

}

=
q

hq(θ)

{∫
1

p(x,θ)
∂ip(x,θ)∂jp(x,θ)dx

}
dθidθj (46)

using the identities (25) and (26). When q = 1, this is the Fisher information given by (43). Hence, the

q-Fisher information is given by (45). �

A Riemannian metric defines the length of a tangent vector X = (X1, · · · , Xn) at θ by

‖X‖2 =
∑

gij(θ)X
iXj (47)

Similarly, for two tangent vectors X and Y , their inner product is defined by

〈X,Y 〉 =
∑

gijX
iY j (48)

When 〈X,Y 〉 vanishes, X and Y are said to be orthogonal. The orthogonality, or more generally

the angle, of two vectors X and Y does not change by a conformal transformation, although their

magnitudes change.

3. Dually Flat Structure of q-Exponential Family

3.1. Legendre Transformation and q-Entropy

Given a convex function ψ(θ), the Legendre transformation is defined by

η = ∇ψ(θ) (49)

where ∇ = (∂/∂θi) is the gradient. Since the correspondence between θ and η is one-to-one, we may

consider η as another coordinate system of S.

The dual potential function is defined by

ϕ(η) = max
θ

{θ · η − ψ(θ)} (50)

which is convex with respect to η. The original coordinates are recovered from the inverse transformation

given by

θ = ∇ϕ(η) (51)

where ∇ = (∂/∂ηi), so that θ and η are in dual correspondence.

The following theorem gives explicit relations among these quantities.
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Theorem 5 The dual coordinates η are given by

η = Ep̂[x] (52)

and the dual potential is given by

ϕ(η) =
1

1− q

{
1

hq(p)
− 1

}
(53)

Proof The relation (52) is immediate from (29). From the Legendre duality, the dual potential satisfies

ϕ(η) + ψ(θ)− θ · η = 0 (54)

when θ and η correspond to each other by η = ∇ψ(θ). Therefore,

ϕ(η) =
n∑

i=1

θiηi − ψ(θ) (55)

= Ep̂

[
logq p(x,θ)

]
(56)

=
1

(1− q)hq(θ)

(
1−

∫
pq(x,θ)dx

)
(57)

=
1

1− q

(
1

hq(θ)
− 1

)
(58)

This is a convex function of η. �

We call the q-dual potential

ϕ(η) = E
[
logq p(x,θ)

]
=

1

1− q

{
1

hq

− 1

}
(59)

the negative q-entropy, because it is the Legendre-dual of the q-free energy ψ(θ). There are various

definitions of q-entropy. The Tsallis q-entropy [3] is originally defined by

HTsallis =
1

1− q
(hq − 1) (60)

while the Rényi q-entropy [33] is

HRényi =
1

1− q
log hq (61)

They are mutually related by monotone functions. When q → 1, all of them reduce to the Shannon

entropy.

Our definition of

Hq =
1

1− q

(
1− 1

hq

)
=

HTsallis

hq

(62)

is also monotonically connected with the previous ones, but is more natural from the point of view

of q-geometry. The entropy Hq has been known as the normalized q-entropy, which was studied in

[16,34–37].
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3.2. q-Dually Flat Structure

There are two dually coupled coordinate systems θ and η in q-exponential family S with two potential

functions ψ(θ) and ϕ(η) for each q. Two affine structures are introduced by the two convex functions ψ

and ϕ. See information geometry of dually flat space [8]. Although S is a Riemannian manifold given by

the q-Fisher information matrix (45), we may nevertheless regard S as an affine manifold where θ is an

affine coordinate system. They represent intensive quantities of a physical system. Dually, we introduce

a dual affine structure to S, where η is another affine coordinate system. They represent extensive

quantities. We can define two types of straight lines or geodesics in S due to the q-affine structures.

For two distributions p (x,θ1) and p (x,θ2) in S, a curve p (x,θ(t)) is said to be a q-geodesic

connecting them, when

θ(t) = tθ1 + (1− t)θ2 (63)

where t is the parameter of the curve. Dually, in terms of dual coordinates η, when

η(t) = tη1 + (1− t)η2 (64)

holds, the curve is said to be a dual q-geodesic.

More generally, the q-geodesic connecting two distribution p1(x) and p2(x) is given by

logq p(x, t) = t logq p1(x) + (1− t) logq p2(x)− c(t) (65)

where c(t) is a normalizing term. This is rewritten as

p(x, t)1−q = tp1(x)
1−q + (1− t)p2(x)

1−q − c(t) (66)

Dually, the dual q-geodesic connecting p1(x) and p2(x) is given by using the escort distributions as

p̂(x, t) = tp̂1(x) + (1− t)p̂2(x) (67)

Since the manifold S has a q-Riemannian structure, the orthogonality of two tangent vectors is

defined by the Riemannian metric. We rewrite the orthogonality of two geodesics in terms of the affine

coordinates. Let us consider two small deviations d1p(x) and d2p(x) of p(x), that is, from p(x) to

p(x)+d1p(x) and p(x)+d2p(x), which are regarded as two (infinitesimal) tangent vectors of S at p(x).

Lemma 1 The inner product of two deviations d1p and d2p is given by

〈d1p(x), d2p(x)〉 =
∫

d1p̂(x)d2 logq p(x)dx (68)

Proof By simple calculations, we have∫
d1p̂(x)d2 logq p(x)dx =

q

hq

∫
d1p(x)d2p(x)

p(x)
dx (69)

of which the right-hand side is the Riemannian inner product in the form of (46). �

Corollary. Two curves θ1(t) and η2(t), intersecting at t = 0, are orthogonal when 〈θ̇1(0), η̇2(0)〉 = 0.

Here, θ̇1(t) and η̇2(t) denote derivatives of θ1(t) and η2(t) by t, respectively.

The two geodesics and the orthogonality play a fundamental role in S as will be seen in the following.
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4. q-Pythagorean and q-Max-Ent Theorems

A dually flat Riemannian manifold admits the generalized Pythagorean theorem and the related

projection theorem [8]. We state them in our case.

q-Pythagorean Theorem. For three distributions p1(x), p2(x) and p3(x) in S, it holds that

Dq [p1 : p2] +Dq [p2 : p3] = Dq [p1 : p3] (70)

when the dual geodesic connecting p1(x) and p2(x) is orthogonal at p2(x) to the geodesic connecting

p2(x) and p3(x) (see Figure 1).

Figure 1. q-Pythagorean theorem.
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Given a distribution p(x) ∈ S and a submanifold M ⊂ S, a distribution r(x) ∈ M is said to be the

q-projection (dual q-projection) of p(x) to M , when the q-geodesic (dual q-geodesic) connecting p(x)

and r(x) is orthogonal to M at r(x) (Figure 2).

Figure 2. q-projection of p to M.
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q-Projection Theorem. Let M be a submanifold of S. Given p(x) ∈ S, the point r(x) ∈ M that

minimizes Dq[p(x) : r(x)] is given by the dual q-projection of p(x) to M . The point r(x) ∈ M that

minimizes Dq[r(x) : p(x)] is given by the q-projection of p(x) to M .
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We show that the well-known q-max-ent theorem in the case of Tsallis q-entropy [1,4,9,11] is a direct

consequence of the above q-Pythagorean and q-projection theorems.

q-Max-Ent Theorem. Probability distributions maximizing the q-entropies HTsallis, HRényi and Hq

under q-linear constraints for m random variables ck(x) and various values of ak

Ep̂ [ck(x)] = ak, k = 1, · · · ,m (71)

form a q-exponential family

logq p(x,θ) =
m∑
i=1

θici(x)− ψ(θ) (72)

The proof is easily obtained by the standard analytical method. Here, we give a geometrical proof.

Let us consider the subspace M∗ ⊂ S whose member p(x) satisfies the m constraints

Ep̂ [ck(x)] =

∫
p̂(x)ck(x)dx = ak, k = 1, · · · ,m. (73)

Since the constraints are linear in the dual affine coordinates η or p̂(x), M∗ is a linear subspace of S

with respect to the dual affine connection. Let p0(x,θ0) be the uniform distribution defined by θ0 = 0,

which implies p0(x,θ0) = const from (6). Let p̄(x) ∈ M∗ be the q-projection of p0(x) to M∗ (Figure 3).

Then, the divergence Dq [p : p0] from p(x) ∈ M∗ to p0(x) is decomposed as

Dq [p : p0] = Dq [p : p̄] +Dq [p̄ : p0] (74)

Let ηp be the dual coordinates of p(x). Since the divergence is written as

Dq [p : p0] = ψ (θ0) + ϕ
(
ηp

)− θ0 · ηp (75)

the minimizer of Dq [p : p0] among p(x) ∈ M∗ is just p̄(x), which is also the maximizer of the entropy

−ϕ
(
ηp

)
.

The trajectories of p̄(x) for various values of ak form a flat subspace orthogonal to M∗, implying that

they form a q-exponential family of the form (6) (see Figure 3). The tangent directions dp̂(x) of M∗

satisfies ∫
dp̂(x)ck(x)dx = 0, k = 1, · · · ,m. (76)

Hence, a q-exponential family of the form

logq p(x, ξ) =
m∑
i=1

ξidi(x)− ψ(ξ) (77)

is orthogonal to M∗, when ∫
dp̂(x)d logq p(x, ξ)dx = 0 (78)

This implies that di(x) = ci(x). Hence, we have the q-exponential family (72) that maximizes the

q-entropies.
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Figure 3. q-Max-Ent theorem.
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5. q-Bayesian MAP Estimator

Given N iid observations x1, · · · ,xN from a statistical model M = {p(x, ξ)}, we have

p (x1, · · · ,xN , ξ) =
N∏
i=1

p (xi, ξ) (79)

Since logq u is a monotonically increasing function, the maximizer of the q-likelihood

lq(x1, · · · ,xN , ξ) = logq p(x1, · · · ,xN , ξ) (80)

is the same as the ordinary maximum likelihood estimator (mle). However, the maximizer of the q-escort

distribution that maximizes the q-escort log-likelihood,

1

q
l̂(x1, · · · ,xN , ξ) = log p(x1, · · · ,xN , ξ)− 1

q
log hq(ξ) (81)

is different from this. We show that the q-mle is a Bayesian MAP (maximum a posteriori probability)

estimator. This clarifies the meaning of the q-escort mle.

The q-escort mle is the maximizer of the q-escort distribution,

ξ̂q = argmax p̂ (x1, · · · ,xN , ξ) (82)

Theorem 6 The q-escort mle ξ̂q is the Bayesian MAP estimator with the prior distribution

π(ξ) = hq(ξ)
−N/q (83)

Proof The Bayesian MAP is the maximizer of the posterior distribution with prior π(ξ)

p (ξ|x1, · · · ,xN) =
π(ξ)p (x1, · · · ,xN , ξ)

p (x1, · · · ,xN)
(84)



Entropy 2011, 13 1183

which also maximizes

(π(ξ)p (x1, · · · ,xN , ξ))
q , for q > 0 (85)

On the other hand, the q-escort mle is the maximizer of

p̂ (x1, · · · ,xN , ξ) =
N∏
i=1

p̂(xi, ξ) =
N∏
i=1

p (xi, ξ)
q

hq(ξ)
(86)

Hence, when

π(ξ) = hq(ξ)
−N/q (87)

the two estimators are identical. �

The theorem shows that the Bayesian prior has a peak at the maximizer of our q-entropy Hq.

6. Conclusions

Much attention has been recently paid to the probability distributions subject to the power law, instead

of the exponential law, since Tsallis proposed the q-entropy and related theories. The power law is also

found in various communication networks. It is now a hot topic of research.

However, we do not have a geometrical foundation while that for the ordinary family of probability

distributions is given by information geometry [8]. The present paper tried to give a geometrical

foundation to the q-family of probability distributions. We introduced a new notion of the q-geometry.

The q-structure is ubiquitous in the sense that the family of all the discrete probability distributions (and

the family of all the continuous probability distributions, if we neglect delicate problems involved in

the infinite dimensionality) belongs to the q-exponential family of distributions for any q. That is, we

can introduce the q-geometrical structure to an arbitrary family of probability distributions, because any

parametrized family of probability distributions forms a submanifold embedded in the entire manifold.

The q-structure consists of a Riemannian metric together with a pair of dually coupled affine

connections, which sits in the framework of the standard information geometry. However, the q-structure

is essentially different from the standard one derived by the invariance criterion of the manifold of

probability distributions. We have a novel look on the theory related to the q-entropy from a viewpoint of

conformal transformation. This leads us to unified definitions of various quantities such as the q-entropy,

q-divergence, q-potential function and their duals, as well as new interpretations of known quantities.

This is a geometrical foundation and we expect that the paper contributes to provide further

developments in this field.
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Conformal geometry of escort probabilities and 
its application t o Voronoi partitions 

A. Ohsraf . H. Matsuzoe. S. Amari 
t 05aka Univcr.sity 

Escort probability is naturally induced from researches o f 
multi fractals (1] and nonextensive statistical mechanics {2] to 

play an important but mysterious role. Testing its utility in 
the other scientific fields would greatly help our understanding 
about it. This motivates us to approach t he escort probability 
by geometrically studying its role in in formation science. The 

first p urpose of this presentat ion is to investigate t he escort 
probability from v iewpoin ts of inJormation geometry [3] and 
affi_ne diffe rential geometry [4]. The second is to show that 
escort probability with infor mation geometric str uctu re is 

useful co construction of Voronoi parti tions (or diagrams) 
(5) on the space o f probability distributions. Recent.ly, it is 
reported [G) t hat alpha-geometry, which is an information 
geometric structure o f constant curvature, has a close relation 

with Tsa.llis statistics (2]. The remarkable feature of the 
a lpha-geometry consists of t he Fisher metric toget.her wit h a 
one parameter family of dual affine connections. called the 
a loha-ronnections. \Ve orove t hat t he manifold of escort 
probability d istribut ions is duaUy flat by considering confor­
mal t ransformations t hat flatten t he alpha-geometry on the 
manifold of usual probability distribut ions. On the resultant 
maniJold, escort probabilities consist of an affine ooordinate 

system. The result gives us a clear geometrical interpretation 
of the escort. probability, and simultaneously, produces its new 
obscure links to conformality and projectivity. Due to these 
two geometrical concepts, however, the obtained dualJy flat 

structure inherits several properties o f the a lpha-geometry. 
The duaJJy flatness proves c rucial to construction o f Voro no i 
partitions for alpha-divergences, whic h we sha ll call a lpha­
Voronoi partit ions. T he Voronoi partitions on the space 
of probability distributions with the Kullback- Leibler, or 

Bregman diverge nces have been recognized as important tools 
for var:ous statistical modeling problems involvin g patlem 
classificat ion, clustering, likelihood ratio test and so on4 The 
largest :ldvantage to take account of aJpha-d.ivergences is t heir 

invariance under transfor mations by sufficient statistics (See 
also [3) in a different v iewpoint), which is a s ignificant re­
quirement for t hose statistical applications. In compu tatio nal 
aspect, the conformal flatlening of t he alpha-geometry enables 

us to invoke the standard algor ithm (5] using a potential 
function and a n upper e nvelop of hyperplanes with t he escort 
probabilities as coordinates. 

(I] C. Beck and F. Schlogl, Thermodynamics of Chaotic Sys­
tems, (Cambr idge University Press, 1993). 
[2) C. TsaiJis, Introduction to Nonextensive Statistical Me­
chanics: Approaching a Compleo: World, (Ber lin( Heidelberg: 
Springer, 2009). 

(3] S.-1. Amari and H. Nagaoka, Methods of Information Ge­
ometry, (Rhode IBiand: AMS&Oxford, 2009). 
(4] K. Nomizu and T . Sasaki, Affine Differrntial Geometry, 
(Cambrid ge University, 1993). 

[5) H. Edelsbrunner, A lgarithms in Combinatorial Geometry, 
(Springor-Verlag, 1987). 
(G) A . Oh ara A. P hys. Lett. A 370 184 (2007); Eu ro. Phys. 
J. B 7 0 15 (20009). 

Characteristics of bubble in bouse price distrib u­
t ion of J apan 

T. Olmishif, T . Mizuno. C. Shimizu. T. Watanabe 
fCanon Institute for C lobal St.udies and University of Tokyo 

\Ve empirically investigate Lhe house p rice d istributions in 
t he Greater Tokyo A rea by using a housin g in fo rmation which 

is published on a weekly basis by Recruit Co., Ltd.. This 
d ataset contains individual listings of 724,416 condominiums 
from 1986 to 2009 including the period of housing bubble. 
The attributes o f a house are a lso included such as its size. 

location, age, and so o n_ This dataset covers more than 
95 percent of t he entire transactions in the cent ra l part o f 
Tokyo (the 23 specia l war ds of Tokyo). We find that the 
cross-sectional distribut ion of house prices has a fat upper tail, 

and the ta il part is close to that o f a power law distribution 
w ith exponent ?3. On t he other hand, t he cross-sectional 
distribution of house s izes measured in terms of floor space 
has less fat tails than the price d istribut ion and is close to 

an exponent iaJ d istribution with mean 25 square meters. \Ve 
also find a posit.ive linear relationship between the log price 
o f a house and its size. An increase in the house s ize by a 
SQuare meter leads to a 1.3 percent increase in the house 
p r ice. \Ve constr uct a size-adjusted price by subtracting the 
house size (multiplied by a p ositive coefficient) from l he log 
p r ice, which is consistent with these findings. \Ve find tha.L 
t he size-adjusted price follows a lognormal d istribution except 

for the period o f the asset bubble and its collapse in Tokyo 
for which t he price distribut ion remains asymmetric and 
ske'"-ed to the right even after controlling for the s ize effect. 
As for the period of t he bubble and its collapse, we find some 

evidence t hat the sharp price movements were concentrated 
in partic ular areas, a nd this spatial heterogeneity is t he 
source of the fat upper tail. T hese findings show t hat t he 
c ross-sectional d is-tribution of size-adjusted prices is very close 
to a lognor mal d istribution during regula r times but deviated 

substantia lly from a lognormal during the bubble period. This 
suggests that the shape of the size--adjusted price d istr ibutio n, 
espcciaiJy the shape of the tail part, may contain information 
useful for the detection of housing bubbles. That is, t he 

presence of a bubble can be safely ruled ou t if recent prit:e 
observations are found to fol!O\v a lognom1aJ d istr ibution. On 
the other hand, if there are many ou t liers. especially near 
t he upper tail, t his may indicate the presence of a bubble, 

s ince such price obser vations are very unlikely to occu r if they 
follow a lognormal dist ribution. This method of identifying 
bubbles is q uite different from conventional ones based on 
aggu:gaLc IUca:>wc:s uf ltullbiu.g JJl itx::S. am] l ltcJduJc .:shuuhJ Lc 

a usefu l tool to supplement exis t.ing methods_ 
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the evolution of the ho-use price distribution, Research Center 

for Price Dynamics (Hitotsubashi University), Discussion Pa­
per No. 5G (2010). 
(2] C.-I. C hou a nd S.P. Li, House price distributions of Tai­
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Abstract. This paper studies geometrical structure of the manifold of escort

probability distributions and shows its new applicability to information science. In

order to realize escort probabilities we use a conformal transformation that flattens

so-called alpha-geometry of the space of discrete probability distributions, which well

characterizes nonadditive statistics on the space. As a result escort probabilities are

proved to be flat coordinates of the usual probabilities for the derived dually flat

structure. Finally, we demonstrate that escort probabilities with the new structure

admits a simple algorithm to compute Voronoi diagrams and centroids with respect to

alpha-divergences.
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1. Introduction

Escort probability is naturally induced from researches of multifractals [1] and non-

extensive statistical mechanics [2] to play an important but mysterious role. Testing

its utility in the other scientific fields would greatly help our understanding about it.

This motivates us to approach the escort probability by geometrically studying its role

in information science.

The first purpose of this paper is to investigate the escort probability from

viewpoints of information geometry [3, 4] and affine differential geometry [5]. The

second is to show that escort probability with information geometric structure is useful

to construction of Voronoi diagrams [6] on the space of probability distributions.

Recently, it is reported [7, 8] that α-geometry, which is an information geometric

structure of constant curvature, has a close relation with Tsallis statistics [2]. The

remarkable feature of the α-geometry consists of the Fisher metric together with a one-

parameter family of dual affine connections, called the α-connections.

We prove that the manifold of escort probability distributions is dually flat by

considering conformal transformations that flatten the α-geometry on the manifold of

usual probability distributions. On the resultant manifold, escort probabilities consist

of an affine coordinate system. See also [9] for another type of flattening a curved dual

manifold by a conformal transformation.

The result gives us a clear geometrical interpretation of the escort probability, and

simultaneously, produces its new obscure links to conformality and projectivity. Due

to these two geometrical concepts, however, the obtained dually flat structure inherits

several properties of the α-geometry.

The dually flatness proves crucial to construction of Voronoi diagrams for α-

divergences, which we shall call α-Voronoi diagrams. The Voronoi diagrams on the space

of probability distributions with the Kullback-Leibler [10, 11], or Bregman divergences

[12] have been recognized as important tools for various statistical modeling problems

involving pattern classification, clustering, likelihood ratio test and so on. See also, e.g.,

[13, 14, 15] for related problems.

The largest advantage to take account of α-divergences is their invariance under

transformations by sufficient statistics [16] (See also [4] in a different viewpoint), which

is a significant requirement for those statistical applications. In computational aspect,

the conformal flattening of the α-geometry enables us to invoke the standard algorithm

[29, 6] using a potential function and an upper envelop of hyperplanes with the escort

probabilities as coordinates.

Section 2 is devoted to preliminaries for α-geometry in the light of affine differential

geometry. In section 3, as a main result, we consider conformal transformations and

discuss properties of the obtained dually flat structure. Dual pairs of potential functions

and affine coordinate systems on the manifold are explicitly identified, and the associated

canonical divergence is shown to be conformal to the α-divergence. Section 4 describes

an application of such a flattened geometric structure to α-Voronoi diagrams on the
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probability simplex. The properties and a construction algorithm are discussed. Further,

a formula for α-centroid is touched upon.

In the sequel, we fix the relations of two parameters q and α as q = (1−α)/2, and

restrict q > 0.

2. Preliminaries

We briefly introduce α-geometry via affine differential geometry. See for details [7, 8].

Let Sn denote the n-dimensional probability simplex, i.e.,

Sn :=

{
p = (pi)

∣∣∣∣∣ pi > 0,
n+1∑
i=1

pi = 1

}
, (1)

and pi, i = 1, · · · , n + 1 denote probabilities of n + 1 states. We introduce the α-

geometric structure on Sn. Let {∂i}, i = 1, · · · , n be natural basis tangent vector fields

on Sn defined by

∂i :=
∂

∂pi
−

∂

∂pn+1

, i = 1, · · · , n, (2)

where pn+1 = 1−
∑n

i=1 pi. Now we define a Riemannian metric g on Sn called the Fisher

metric:

gij(p) := g(∂i, ∂j) =
1

pi
δij +

1

pn+1
(3)

=
n+1∑
k=1

pk(∂i log pk)(∂j log pk), i, j = 1, · · · , n.

Further, define an torsion-free affine connection ∇(α) called the α-connection, which is

represented in its coefficients by

Γ
(α)k
ij (p) =

1 + α

2

(
−

1

pk
δkij + pkgij

)
, i, j, k = 1, · · · , n, (4)

where δkij is equal to one if i = j = k and zero otherwise. Then we have the α-covariant

derivative ∇(α), which gives

∇(α)
∂i
∂j =

n∑
k=1

Γ
(α)k
ij ∂k,

when it is applied to the vector fields ∂i and ∂j .

There are two specific features for the α-geometry on Sn defined in such a way. First,

the triple (Sn, g,∇(α)) is a statistical manifold [17] (See appendix A for its definition),

i.e., we can confirm that the following relation holds:

Xg(Y, Z) = g(∇(α)
X Y, Z) + g(Y,∇(−α)

X Z), X, Y, Z ∈ X (Sn), (5)

where X (Sn) denotes the set of all tangent vector fields on Sn. Two statistical manifolds

(Sn, g,∇(α)) and (Sn, g,∇(−α)) are said mutually dual.

The other is that (Sn, g,∇(α)) is a manifold of constant curvature κ = (1− α2)/4,

i.e.,

R(α)(X, Y )Z = κ{g(Y, Z)X − g(X,Z)Y },
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where R(α) is the curvature tensor with respect to ∇(α). From this property the well-

known nonadditive formula of the Tsallis entropy can be derived [7].

In [8] we have discussed the α-geometry on Sn from a viewpoint of affine differential

geometry [5]. Consider the immersion f of Sn into Rn+1
+ by

f : p = (pi) 7→ x = (xi) = (L(α)(pi)), i = 1, · · · , n+ 1, (6)

where (xi), i = 1, · · · , n + 1 is the canonical flat coordinate system of Rn+1 and the

function L(α) is defined by

L(α)(t) :=
2

1− α
t(1−α)/2 =

1

q
tq.

Note that f(Sn) is a level hypersurface in the ambient space Rn+1
+ represented by

Ψ(x) = 2/(1 + α), where

Ψ(x) :=
2

α + 1

n+1∑
i=1

(
1− α

2
xi
)2/(1−α)

=
1

1− q

n+1∑
i=1

(
qxi
)1/q

. (7)

We choose a transversal vector ξ on the level hypersurface by

ξ :=
n+1∑
i=1

ξi
∂

∂xi
, ξi = −q(1− q)xi = −κxi. (8)

Then we can confirm that the affine immersion (f, ξ) realizes the α-geometry on Sn [8].

Hence, it would be possible to develop theory of the α-geometry and Tsallis statistics

with ideas of affine differential geometry [18].

Further, the escort probability [1] naturally appears in this setup. The escort

probability P = (Pi) associated with p = (pi) is the normalized version of (pi)
q, and is

defined by

Pi(p) :=
(pi)

q∑n+1
j=1 (pj)

q
=
xi

Zq
, i = 1, · · · , n+ 1, Zq(p) :=

n+1∑
i=1

xi(p), x(p) ∈ f(Sn). (9)

Hence, the simplex En in the ambient space Rn+1
+ , i.e.,

En :=

{
x = (xi)

∣∣∣∣∣
n+1∑
i=1

xi = 1, xi > 0

}

represents the set of escort distributions P .

Note that the element x∗ = (x∗i ) in the dual space of Rn+1 defined by

x∗i (p) := L(−α)(pi) =
1

1− q
(pi)

1−q, i = 1, · · · , n+ 1,

meets

x∗i (p) =
∂Ψ

∂xi
(x(p)).

Hence, it satisfies [8]

−
n+1∑
i=1

ξi(p)x∗i (p) = 1,
n+1∑
i=1

x∗i (p)X
i = 0, (10)

for an arbitrary vector X =
∑n+1

i=1 X
i∂/∂xi at x(p) tangent to f(Sn). Thus, −x∗(p)

can be interpreted as the conormal map [5].
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3. A conformally and projectively flat geometric structure and escort

probabilities

In this section we show a main result. For this purpose, we consider a conformal and

projective transformation [19, 20, 21, 22] of the α-geometry to introduce a dually flat

one. This flattening of the α-geometry conserves some of its properties. The escort

probabilities (Pi) are found to represent one of mutually dual affine coordinate systems

in the induced geometry. While the many functions or geometric quantities introduced

in this section depend on the parameter α or q, we omit them for the brevity.

Let us define a function λ on Sn by

λ(p) :=
1

Zq
=

1∑n+1
i=1 L

(α)(pi)
,

which depends on α. Then, from (9) En is regarded as the image of Sn for another

immersion f̃ := λf , i.e.,

f̃ : Sn ∋ (pi) 7→ (Pi) ∈ E
n, i = 1, · · · , n+ 1,

and (P1, · · · , Pn) is interpreted as another coordinate system of Sn. Note that the inverse

mapping f̃−1 is well-defined by

f̃−1 : (Pi) 7→ (pi) =

(
(Pi)

1/q∑n+1
j=1 (Pj)1/q

)
, i = 1, · · · , n+ 1.

It would be a natural way to introduce geometric structure on En (and hence on Sn)

via the affine immersion (f̃ , ξ̃) by taking a suitable transversal vector ξ̃, similarly to the

case of the α-geometry mentioned above. Since En is a part of a hyperplane in Rn+1,

the canonical affine connection of Rn+1 induces a flat connection, denoted by D(E), on

En. However, for the same reason, we cannot define a Riemannian metric in this way§

because it vanishes on En, regardless of any choice of the transversal vector ξ̃.

The idea we adopt here is to define a Riemannian metric by utilizing a property

of (Sn, g,∇(α)) called −1-conformal flatness. Based on the results proved by Kurose

[19, 20], we conclude that the manifold (Sn, g,∇(α)) is±1-conformally flat (See Appendix

A for its definition) because it is a statistical manifold of constant curvature.

Actually, let ∇∗ be the flat connection‖ on Sn defined with D(E) and the differential

f̃∗ by

f̃∗(∇
∗
XY ) = D

(E)

f̃∗X
f̃∗Y, X, Y ∈ X (Sn).

Then, we can prove that ∇(α) and ∇∗ are projectively equivalent [5], i.e., it holds that

∇∗
XY = ∇(α)

X Y + d(lnλ)(Y )X + d(lnλ)(X)Y, X, Y ∈ X (Sn). (11)

Hence, if we define another Riemannian metric h on Sn by

h(X, Y ) := λg(X, Y ), X, Y ∈ X (Sn), (12)

§ In affine differential geometry, a Riemannian metric is realized as the affine fundamental form of an

affine immersion [5].
‖ For the sake of notational consistency with the existing literature, e.g., [3, 4], we first define ∇∗, and

later ∇ as the dual of ∇∗.
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then, (Sn, g,∇(α)) is −1-conformally equivalent to (Sn, h,∇∗) equipped with a flat

connection ∇∗. Further, the manifold (Sn, h,∇∗) can be proved to be a statistical

manifold (See Appendix B).

Using the conormal map −x∗(p), we can define the α-divergence as a contrast

function (See Appendix A) inducing (g,∇(α),∇(−α)) as follows [20]:

D(α)(p, r) = −
n+1∑
i=1

x∗i (r)(x
i(p)− xi(r))

= 〈−x∗(r),x(p)− x(r)〉 =
1

κ
− 〈x∗(r),x(p)〉.

The statistical manifolds (Sn, g,∇(−α)) and (Sn, g,∇(α)) are dual in the sense of

(5). Further, it is known [4] that there exists the unique affine flat connection ∇ on

Sn, dual with respect to (h,∇∗). Then, according to [20], it is proved that (Sn, h,∇) is

1-conformally equivalent to (Sn, g,∇(−α)) and a contrast function ρ inducing (h,∇,∇∗)

is given by scaling D(−α) (See Appendix A) as follows:

ρ(p, r) = λ(r)D(−α)(p, r) =
1

Zq(r)
D(−α)(p, r)

=
1

Zq(r)
〈−x(r),x∗(p)− x∗(r)〉 = 〈−P (r),x∗(p)− x∗(r)〉. (13)

We shall call ρ a conformal divergence.

Now, since (Sn, h,∇,∇∗) is a dually flat space, the standard result in [3, 4] suggests

that there exist mutually dual affine coordinate systems (θ1, · · · , θn) and (η1, · · · , ηn), a

potential function ψ(θ) and its conjugate ψ∗(η) satisfying

ηi =
∂ψ

∂θi
, θi =

∂ψ∗

∂ηi
, i = 1, · · · , n. (14)

They completely determine dually flat structure, i.e., the coefficients of h, ∇ and ∇∗

are derived as the second and third derivatives of ψ or ψ∗, for example,

hij = h

(
∂

∂θi
,
∂

∂θj

)
=

∂2ψ

∂θi∂θj
, hij = h

(
∂

∂ηi
,
∂

∂ηj

)
=

∂2ψ∗

∂ηi∂ηj
,

Γijk = h

(
∇ ∂

∂θi

∂

∂θj
,
∂

∂θk

)
= 0, Γ∗

ijk = h

(
∇∗

∂

∂θi

∂

∂θj
,
∂

∂θk

)
=

∂3ψ

∂θi∂θj∂θk
,

and so on. In order to identify ψ, ψ∗, θi and ηi explicitly without integrating hij or

hij , we shall search for them by examining whether the conformal divergence ρ can be

represented in the form of the canonical divergence [4], i.e.,

ρ(p, r) = ψ(θ(p)) + ψ∗(η(r))−
n∑

i=1

θi(p)ηi(r). (15)

with the constraints (14). If this is possible, we can directly prove from (A.4) and (A.5)

that the obtained ψ, ψ∗, (θ1, · · · , θn) and (η1, · · · , ηn) are pairs of dual potential functions

and affine coordinate systems associated with (Sn, h,∇,∇∗).

Before showing the result, we define, for 0 < q with q 6= 1, two functions by

lnq(s) :=
s1−q − 1

1− q
, s ≥ 0, expq(t) := [1 + (1− q)t]1/(1−q)

+ , t ∈ R,
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where [t]+ := max{0, t}, and the so-called Tsallis entropy [23] by

Sq(p) :=

∑n+1
i=1 (pi)

q − 1

1− q
.

Note that s = expq(lnq(s)) holds and they respectively recover the usual logarithmic,

exponential function and the Boltzmann-Gibbs-Shannon entropy −
∑n+1

i=1 pi ln pi when

q → 1. For q > 0, lnq(s) is concave on s > 0.

Theorem 1 For the dually flat space (Sn, h,∇,∇∗) defined via ±1-conformal

transformation from (Sn, g,∇(α),∇(−α)), the associated potential functions ψ, ψ∗, and

dually flat affine coordinate systems (θ1, · · · , θn) and (η1, · · · , ηn) are represented as

follows:

θi(p) = x∗i (p)− x
∗
n+1(p), i = 1, · · · , n

ηi(p) = Pi(p), i = 1, · · · , n

ψ(θ(p)) = − lnq(pn+1),

ψ∗(η(p)) =
1

κ
(λ(p)− q) =

1

1− q

(
n+1∑
i=1

(ηi)
1/q

)q

−
1

1− q
,

where κ = (1 − α2)/4 = q(1 − q) is the scalar curvature of (Sn, g,∇(α),∇(−α)) and

ηn+1 := Pn+1(p) = 1 −
∑n

i=1 Pi(p). Further, the coordinate systems (θ1, · · · , θn) and

(η1, · · · , ηn) are ∇- and ∇∗-affine, respectively.

Proof) As is mentioned above we have only to check that the potential functions ψ, ψ∗

and dual affine coordinates θi, ηi in the statement satisfy (14) and (15) for the conformal

divergence ρ. First, substitute them directly to the right-hand side of (15) and modify

it caring for the relation ηn+1 = 1−
∑n

i=1 ηi, then we see that it coincides with ρ(p, r) in

(13). Next, since it holds that lnq(pi) = x∗i (p)−1/(1−q), we can alternatively represent

θi(p) = lnq(pi)− lnq(pn+1) = lnq(pi) + ψ(θ(p)), i = 1, · · · , n.

Hence, for θn+1 ≡ 0 it holds

1 =
n+1∑
i=1

pi =
n+1∑
i=1

expq(θ
i − ψ).

Differentiating the both sides by θj , j = 1, · · · , n, we have

0 =
n+1∑
i=1

(
δij −

∂ψ

∂θj

)
(pi)

q = (pj)
q −

∂ψ

∂θj

n+1∑
i=1

(pi)
q, j = 1, · · · , n.

Thus, the left equation of (14) holds. Finally, note that the conformal factor is

represented by

λ(p) =
1

Zq(p)
=

q∑n+1
i=1 (pi)

q
=

q

(expq(Sq(p)))1−q
. (16)

Using the formula [24]:

expq(Sq(p)) = exp 1

q

(
S 1

q
(P )

)
,
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we see that

λ(p) = q
(
exp 1

q

(
S 1

q
(P )

))q−1

= q

(
n+1∑
i=1

(Pi)
1

q

)q

.

Hence, the second equality in the expression of ψ∗ holds. The right equation of (14)

follows if you again recall ηn+1 = 1−
∑n

i=1 ηi. Q.E.D.

Corollary 1 The escort probabilities Pi, i = 1, · · · , n are canonical affine coordinates of

the flat affine connection ∇∗ on Sn.

Remark 1: Since the conformal factor λ in (16) can be alternatively represented by

λ(p) =
q

(expq(Sq(p)))1−q
= κ lnq

(
1

expq(Sq(p))

)
+ q,

we have another expression of ψ∗, i.e,

ψ∗ = lnq

(
1

expq(Sq(p))

)
.

Thus, the potentials and dual coordinates given in the proposition recover the standard

ones [3, 4] when q → 1, i.e,

ψ → − ln pn+1, ψ∗ →
n+1∑
i=1

pi log pi θi → log(pi/pn+1), ηi → pi, i = 1, · · · , n.

Note that −ψ∗ coincides with the entropy studied in [25, 26, 27] and referred to as the

normalized Tsallis entropy. The conformal (or scaling) factor λ often appears in the

study of the q-analysis.

Remark 2: Similarly to the above conformal transformation of (Sn, g,∇(α)), we can

define another one for (Sn, g,∇(−α)) with a conformal factor

λ′(p) :=
1∑n+1

i=1 L
(−α)(pi)

,

and construct another dually flat structure (h′ = λ′g,∇′,∇′∗). Hence, the following

relations among them hold (See Figure 1).

(Sn, h′,∇′)
dual
←→ (Sn, h′,∇′∗)

1-conformally equivalent l l −1-conformally equivalent

(Sn, g,∇(α))
dual
←→ (Sn, g,∇(−α))

−1-conformally equivalent l l 1-conformally equivalent

(Sn, h,∇∗)
dual
←→ (Sn, h,∇)

Figure 1. Relations among geometries

Remark 3: Because of the projective equivalence (11), a submanifold in Sn is ∇(α)-

autoparallel if and only if it is ∇∗-autoparallel. In particular, the set of distributions

constrained with the normalized q-expectations (escort averages) [2] is a simultaneously

∇(α)- and ∇∗-autoparallel submanifold in Sn.
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4. Applications to construction of alpha-Voronoi diagrams and

alpha-centroids

For given m points p1, · · · ,pm on Sn we define α-Voronoi regions on Sn using the α-

divergence as follows:

Vor(α)(pk) :=
⋂
l 6=k

{p ∈ Sn|D(α)(p,pk) < D(α)(p,pl)}, k = 1, · · · , m.

An α-Voronoi diagram on Sn is a collection of the α-Voronoi regions and their

boundaries. Note that D(α) approaches the Kullback-Leibler divergence if α → −1,

and D(0) is called the Hellinger distance. If we use the Rényi divergence of order α 6= 1

[28] defined by

Dα(p, r) :=
1

α− 1
ln

n+1∑
i=1

(pi)
α(ri)

1−α,

instead of the α-divergence, Vor(1−2α)(pk) gives the corresponding Voronoi region

because of their one-to-one functional relationship.

The standard algorithm using projection of a polyhedron [29, 6] commonly works

well to construct Voronoi diagrams for the Euclidean distance [6], the Kullback-Leibler

[11] and Bregman divergences [12], respectively. The algorithm is applicable if a distance

function is represented by the remainder of the first order Taylor expansion of a convex

potential function in a suitable coordinate system. Geometrically speaking, this is

satisfied if i) the divergence is a canonical one for a certain dually flat structure and

ii) its affine coordinate system is chosen to realize the corresponding Voronoi diagrams.

In this coordinate system with one extra complementary coordinate the polyhedron is

expressed as the upper envelop of m hyperplanes tangent to the potential function.

A problem for the case of the α-Voronoi diagram is that the α-divergence on

Sn cannot be represented as a remainder of any convex potentials. The following

theorem, however, claims that the problem is resolved by conformally transforming the

α-geometry to the dually flat structure (h,∇,∇∗) and using the conformal divergence

ρ and escort probabilities as a coordinate system.

Here, we denote the point on En by P = (P1, · · · , Pn) because Pn+1 = 1−
∑n

i=1 Pi.

Theorem 2 i) The bisector of pk and pl defined by {p|D(α)(p,pk) = D(α)(p,pl)} is

a simultaneously ∇(α)- and ∇∗-autoparallel hypersurface on Sn.

ii) Let Hk, k = 1, · · · , m be the hyperplane in En ×R which is respectively tangent at

(P k, ψ
∗(P k)) to the hypersurface {(P , y)|y = ψ∗(P )}, where P k = P (pk). The

α-Voronoi diagram can be constructed on En as the projection of the upper envelope

of Hk’s along the y-axis.

Proof) i) Consider the ∇(−α)-geodesic γ(−α) connecting pk and pl, and let p̄ be

the midpoint on γ(−α) satisfying D(α)(p̄,pk) = D(α)(p̄,pl). Denote by B the ∇(α)-

autoparallel hypersurface that is orthogonal to γ(−α) and contains p̄. Then, for all
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Figure 2. An example of α-Voronoi diagram on S2 (left) for α = 0.6 (or q = 0.2) and

the corresponding one on E2 (right).
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Figure 3. An example of α-Voronoi diagram on S2 (left) for α = −2 (or q = 1.5) and

the corresponding one on E2 (right).

r ∈ B, the modified Pythagorean theorem [20, 7] implies the following equality:

D(α)(r,pk) = D(α)(r, p̄) +D(α)(p̄,pk)− κD
(α)(r, p̄)D(α)(p̄,pk)

= D(α)(r, p̄) +D(α)(p̄,pl)− κD
(α)(r, p̄)D(α)(p̄,pl) = D(α)(r,pl).

Hence, B is a bisector of pk and pl. The projective equivalence ensures that B is also

∇∗-autoparallel.

ii) Recall the equality D(α)(p, r) = D(−α)(r,p) and the conformal relation (13)

between D(−α) and ρ, then we see that Vor(α)(pk) = Vor(conf)(pk) holds on S
n, where

Vor(conf)(pk) :=
⋂
l 6=k

{p ∈ Sn|ρ(pk,p) < ρ(pl,p)}.
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Theorem 1, relations (14) and (15) imply that ρ(pk,p) is represented with the

coordinates (Pi) by

ρ(pk,p) = ψ∗(P )−

(
ψ∗(P k) +

n∑
i=1

∂ψ∗

∂Pi
(P k)(Pi(p)− Pi(pk))

)
,

where P = P (p). Note that a point (P , yk(P )) in Hk is expressed by

yk(P ) := ψ∗(P k) +
n∑

i=1

∂ψ∗

∂Pi
(P k)(Pi(p)− Pi(pk)).

Hence, we have ρ(pk,p) = ψ∗(P ) − yk(P ). We see, for example, that the bisector on

En for pk and pl is represented as a projection of Hk ∩Hl. Thus, the statement follows.

Q.E.D.

The figure 2 and 3 show examples of α-Voronoi diagrams on the simplex of

dimension 2. In these cases, the bisectors are simultaneously ∇(α)- and ∇∗-geodesics.

Remark 4: In [30] Voronoi diagrams for broader class of divergences (contrast

functions) that are not necessarily associated with any convex potentials are studied from

more general affine differential geometric points of views. The construction algorithm is

also given there, which is applicable if the corresponding affine immersion is explicitly

obtained.

On the other hand, the α-divergence defined not only on Sn but on the positive

orthant Rn+1
+ can be represented as a remainder of the potential Ψ in (7) [3, 4, 8].

Hence, the α-geometry on Rn+1
+ is dually flat. Using this property, α-Voronoi diagrams

on Rn+1
+ is discussed in [31].

While both of the above methods require computation of the polyhedrons in the

space of dimension n + 2, the new one proposed in this paper does in the space of

dimension n+ 1. Since the optimal computational time of polyhedrons depends on the

dimension d by O(m logm+m⌊d/2⌋) [32], the new one where d = n+1 is slightly better

when n is even.

The next proposition is a simple and relevant application of escort probabilities.

Define the α-centroid c(α) for given m points p1, · · · ,pm on Sn by the minimizer of the

following problem:

min
p∈Sn

m∑
k=1

D(α)(pk,p).

Proposition 1 The α-centroid c(α) for given m points p1, · · · ,pm on Sn is represented

in escort probabilities by the weighted average of conformal factors λ(pk) = 1/Zq(pk),

i.e.,

Pi(c
(α)) =

1∑m
k=1Zq(pk)

m∑
k=1

Zq(pk)Pi(pk), i = 1, · · · , n+ 1.

Proof) Let θi = θi(p). Using (13), (15) and the relation D(α)(p, r) = D(−α)(r,p), we

have
m∑
k=1

D(α)(pk,p) =
m∑
k=1

Zq(pk)ρ(p,pk) =
m∑
k=1

Zq(pk){ψ(θ) + ψ∗(η(pk))−
n∑

i=1

θiηi(pk)}.



Escort Probability and Its Applications via Conformal Transformation 12

Then the optimality condition is

∂

∂θi

m∑
k=1

D(α)(pk,p) =
m∑
k=1

Zq(pk)(ηi − ηi(pk)) = 0, i = 1, · · · , n,

where ηi = ηi(p). Thus, the statement follows from Theorem 1 for i = 1, · · · , n. For

i = n + 1 it follows from the fact that the sum of the weights is equal to one. Q.E.D.

5. Concluding remarks

We have considered ±1-conformal transformations of the α-geometry and obtained

dually flat structure (Sn, h,∇,∇∗). Further the potential functions and dually flat

coordinate systems associated with the structure have been derived. We see that the

escort probability naturally appears to play an important role.

From a viewpoint of contrast functions, the geometric structure compatible to the

Kullback-Leibler divergence is (Sn, g,∇(1),∇(−1)), where g is the Fisher information

and ∇(±1) are respectively the e-connection and the m-connection. Similarly, the α-

divergence (or the Tsallis relative entropy), and the conformal divergence ρ in this note

correspond to (Sn, g,∇(α),∇(−α)) and (Sn, h,∇,∇∗), respectively. They are summarized

in Figure 4.

KL divergence α-divergence conformal divergence

(Sn, g,∇(1),∇(−1)) ←→ (Sn, g,∇(α),∇(−α)) ←→ (Sn, h,∇,∇∗), (Sn, h′,∇′,∇′∗)

dually flat constant curvature κ dually flat

Figure 4. transformations of dualistic structures

The physical meaning or essence underlying these transformations would be

interesting and significant, but is left unclear. (See recent publications [33, 34] for

such research directions.)

Finally, we have shown a direct application of the conformal flattening to

computation of α-Voronoi diagrams and α-centroids. Escort probabilities are found

to work as a suitable coordinate system for the purpose.

Acknowledgments

The first author would like to thank Prof. Tatsuaki Wada for helpful comments.

Appendix A: Statistical manifold and α-conformally equivalence

For details of this appendix see [17, 19, 20, 21, 22]. For a torsion-free affine connection

∇ and a pseudo Riemannian metric g on a manifoldM, the triple (M, g,∇) is called a

statistical manifold if it admits another torsion-free connection ∇∗ satisfying

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ) (A.1)
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for arbitrary X, Y and Z in X (M), where X (M) is the set of all tangent vector fields on

M. It is known that (M, g,∇) is a statistical manifold if and only if ∇g is symmetric,

i.e., (∇Xg)(Y, Z) is symmetric with respect to X, Y and Z. We call ∇ and ∇∗ duals

of each other with respect to g, and (M, g,∇∗) is said the dual statistical manifold of

(M, g,∇). The triple of a Riemannian metric and a pair of dual connections (g,∇,∇∗)

satisfying (A.1) is called a dualistic structure onM.

For α ∈ R, statistical manifolds (M, g,∇) and (M, g′,∇′) are said to be α-

conformally equivalent if there exists a positive function φ onM such that

g′(X, Y ) = φg(X, Y ),

g(∇′
XY, Z) = g(∇XY, Z)−

1 + α

2
d(lnφ)(Z)g(X, Y )

+
1− α

2
{d(lnφ)(X)g(Y, Z) + d(lnφ)(Y )g(X,Z)}.

Statistical manifolds (M, g,∇) and (M, g′,∇′) are α-conformally equivalent if and only

if (M, g,∇∗) and (M, g,∇′∗) are −α-conformally equivalent.

A statistical manifold (M, g,∇) is called α-conformally flat if it is locally α-

conformally equivalent to a flat statistical manifold. Note that−1-conformal equivalence

implies projective equivalence. A statistical manifold of dimension greater than three

has constant curvature if and only if it is ±1-conformally flat.

We call a function ρ on M×M a contrast function [35] inducing (g,∇,∇∗) if it

satisfies

ρ(p, p) = 0, p ∈M, (A.2)

ρ[X|] = ρ[|Y ] = 0, (A.3)

g(X, Y ) = − ρ[X|Y ], (A.4)

g(∇XY, Z) = − ρ[XY |Z], g(Y,∇∗
XZ) = −ρ[Y |XZ], (A.5)

where

ρ[X1 · · ·Xk|Y1 · · ·Yl](p) := (X1)p · · · (Xk)p(Y1)q · · · (Yl)qρ(p, q)|p=q

for arbitrary p, q ∈ M and Xi, Yj ∈ X (M). If (M, g,∇) and (M, g′,∇′) are 1-

conformally equivalent, a contrast function ρ′ inducing (g′,∇′,∇′∗) is represented by

ρ inducing (g,∇,∇∗), as

ρ′(p, q) = φ(q)ρ(p, q).

Appendix B: The proof for the fact that (Sn, h,∇∗) is a statistical manifold

We show that ∇∗h is symmetric. By the definition of −1-conformally flatness we have

(∇∗
Xh)(Y, Z) = Xh(Y, Z)− h(∇∗

XY, Z)− h(Y,∇
∗
XY )

= dλ(X)g(Y, Z) + λXg(Y, Z)

− λ{g(∇(α)
X Y, Z) + d(lnλ)(Y )g(X,Z) + d(lnλ)(X)g(Y, Z)}

− λ{g(Y,∇(α)
X Z) + d(lnλ)(Z)g(X, Y ) + d(lnλ)(X)g(Z, Y )}.
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Substitute the equality λd(lnλ) = dλ into the right-hand side, then it is transformed to

λ{Xg(Y, Z)− g(∇(α)
X Y, Z)− g(Y,∇(α)

X Z)

− d(lnλ)(X)g(Y, Z)− d(lnλ)(Y )g(X,Z)− d(lnλ)(Z)g(X, Y )}

= λ(∇(α)
X g)(Y, Z)− λ{d(lnλ)(X)g(Y, Z) + d(lnλ)(Y )g(X,Z) + d(lnλ)(Z)g(X, Y )}.

Thus, ∇∗h is symmetric because (Sn, g,∇(α)) is a statistical manifold, i.e., ∇(α)g is

symmetric. Since ∇(α) is torsion-free, so is ∇∗ by the definition of −1-conformally

flatness.
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Geometry for q-exponential families is studied in this paper. A q-exponential

family is a set of probability distributions, which is a natural generalization
of the standard exponential family. A q-exponential family has information
geometric structure and a dually flat structure. To describe these relations,
generalized conformal structures for statistical manifolds are studied in this

paper. As an application of geometry for q-exponential families, a geometric
generalization of statistical inference is also studied.

Keywords: q-exponential family, q-product, Information geometry, Tsallis
statistics, Statistical manifold, Divergence.

Introduction

An exponential family is a set of probability distributions such as a set of

normal distributions, of Poisson distributions, or of gamma distributions,

etc. Such probability distributions decay exponentially. However, in com-

plex systems, probability distributions often have long tails, that is, prob-

ability distributions do not decay exponentially. The q-normal distribution

which is frequently discussed in Tsallis nonextensive statistical mechanics

[18] is a typical example of such probability distributions.

In this paper, we consider q-exponential families. A q-exponential family

is a natural generalization of the standard exponential family, and which in-

cludes the set of q-normal distributions. From the viewpoint of information

geometry, it is known that an exponential family has a dually flat structure

(see [1]). We will see that q-exponential families naturally have dually flat
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structures.

A q-exponential family also has information geometric structure, that

is, a q-exponential family has the Fisher metric and α-connections. Hence a

q-exponential family has two kinds of statistical manifold structures. Thus,

we consider relations of these structures using generalized conformal equiv-

alence relations on statistical manifolds.

In the later part of this paper, we consider statistical inferences for

q-exponential families. Generalizations of independence or likelihood func-

tions have been introduced in machine learning theory [4] or in Tsallis

statistics [16]. We show that dually flat structures on q-exponential fami-

lies work naturally for such generalized statistical inferences.

1. Preliminaries

In this section, we review geometry of statistical models and related ge-

ometry (cf.[1, 15]). We assume that all objects are smooth throughout this

paper. We also assume that the manifold is simply connected since we will

discuss geometry of statistical models.

1.1. Statistical models

Let X be a total sample space and let Ξ be an open domain of Rn. We

say that S is a statistical model or a parametric model on X if S is a set of

probability densities with parameter ξ ∈ Ξ such that

S =

{
p(x; ξ)

∣∣∣∣∫
X
p(x; ξ)dx = 1, p(x; ξ) > 0, ξ ∈ Ξ ⊂ Rn

}
.

Under suitable conditions, S can be regarded as a manifold with a local

coordinate system {ξ1, . . . , ξn} (see [1]).

For a statistical model S, we define a function gFij(ξ) : Ξ → R by the

following formula:

gFij(ξ) :=

∫
X

(
∂

∂ξi
log p(x; ξ)

)(
∂

∂ξj
log p(x; ξ)

)
p(x; ξ)dx

= Eξ[∂ilξ∂j lξ].

Here, for simplicity, we used following notations:

Eξ[f ] =

∫
X
f(x)p(x; ξ)dx, (the expectation of f(x) at p(x; ξ)),

lξ = l(x; ξ) = log p(x; ξ), (the log likelihood of p(x; ξ)),

∂i =
∂

∂ξi
.
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We assume that gFij(ξ) is finite for all i, j, ξ. Set a matrix gF = (gFij), then

we can check that gF is symmetric and non-negative definite. We assume

that gF is positive definite. Then gF is a Riemannian metric on S. We call

gF the Fisher metric on S.

For α ∈ R, we define the α-connection ∇(α) by the following formulas:

Γ
(α)
ij,k(ξ) = Eξ

[(
∂i∂j lξ +

1− α
2

∂ilξ∂j lξ

)
(∂klξ)

]
,

h(∇(α)
∂i
∂j , ∂k) = Γ

(α)
ij,k.

We can check that ∇(α) is torsion-free and ∇(0) is the Levi-Civita connec-

tion of the Fisher metric. It is known that ±1-connections are more im-

portant than the Levi-Civita connection in geometric theory of statistical

inferences. We call ∇(1) the exponential connection and ∇(−1) the mixture

connection.

For α-connections, the following formula holds

XgF (Y, Z) = gF (∇(α)
X Y, Z) + gF (Y,∇(−α)

X Z).

The connections ∇(α) and ∇(−α) are said to be dual (or conjugate) with re-

spect to gF . For arbitrary α, β ∈ R, the difference between the α-connection

and the β-connection is given by

Γ
(β)
ij,k = Γ

(α)
ij,k +

α− β
2

CF
ijk,

where

CF
ijk(ξ) = Eξ[∂ilξ∂j lξ∂klξ].

The (0, 3)-tensor field CF determined by CF
ijk is called a cubic form. The

covariant derivative of the Fisher metric gF satisfies (∇(α)
X gF )(Y, Z) =

αCF (X,Y, Z).

We say that a statistical model S is an exponential family if

S =

{
p(x; θ)

∣∣∣∣∣ p(x; θ) = exp

[
Z(x) +

n∑
i=1

θiFi(x)− ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
,

where Θ is a parameter space, Z,F1, · · · , Fn are random variables on X
and ψ is a function on Θ. The coordinate system {θi} is called the natural

parameters.

Proposition 1.1. For an exponential family S, the natural parameters

{θi} is an affine coordinate system with respect to ∇(1), that is, Γ
(1) k
ij ≡

0 (i, j, k = 1, . . . , n), and the 1-connection ∇(1) is flat.
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For simplicity, we set Z = 0. It is possible to assume this condition

without loss of generality. We say that M is a curved exponential family of

S if M is a submanifold of S such that

M = {p(x; θ(u)) |p(x; θ(u)) ∈ S, u ∈ U ⊂ Rm } .

Example 1.1 (normal distributions). Let S be the set of normal dis-

tributions,

S =

{
p(x;µ, σ)

∣∣∣∣ p(x;µ, σ) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]}
.

Here, the sample space X is R, and the parameter space is the upper half

plane Ξ = {(µ, σ)}| −∞ < µ <∞, 0 < σ <∞}.
The Fisher metric in (µ, σ)-coordinate is given by

(gFij) =
1

σ2

(
1 0

0 2

)
.

Hence S is a space of constant negative curvature −1/2.
Let us change parameters as follows:

θ1 =
µ

σ2
, θ2 = − 1

2σ2
.

Set

Z(x) = 0, F1(x) = x, F2(x) = x2,

ψ(θ) =
µ2

2σ2
+ log(

√
2πσ) = − (θ1)2

4θ2
+

1

2
log
(
− π

θ2

)
,

then we obtain

p(x;µ, σ) =
1√
2πσ

exp

[
− (x− u)2

2σ2

]
= exp

[
µ

σ2
x− 1

2σ2
x2 − µ2

2σ2
− log(

√
2πσ)

]
= exp

[
xθ1 + x2θ2 − ψ(θ)

]
.

This implies that the set of normal distributions is an exponential family.

For an exponential family, the Fisher metric and the cubic form in {θi}-
coordinate are given by

gFij(θ) = ∂i∂jψ(θ), (1)

CF
ijk(θ) = ∂i∂j∂kψ(θ). (2)

The expectation parameters {ηi} are given by ηi = E[Fi(x)], and {ηi} is a
∇(−1)-affine coordinate system.
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1.2. Statistical manifolds

Let (M,h) be a semi-Riemannian manifold, and let∇ be a torsion-free affine

connection on M . We sat that the triplet (M,∇, h) is a statistical manifold

if∇h is a totally symmetric (0, 3)-tensor field. Obviously, a statistical model

has many statistical manifold structures.

For a statistical manifold (M,∇, h), we define the dual connection ∇∗

with respect to h by

Xh(Y, Z) = h(∇XY,Z) + h(Y,∇∗
XZ).

The connection ∇∗ is torsion-free and ∇∗h is also symmetric. Hence the

triplet (M,∇∗, h) is a statistical manifold. We call (M,∇∗, h) the dual sta-

tistical manifold of (M,∇, h).

Proposition 1.2. Let (M,h) be a semi-Riemannian manifold and let C

be a totally symmetric (0, 3)-tensor field. Denote by ∇(0) the Levi-Civita

connection ∇(0) with respect to h. We define an affine connection ∇(α) by

h(∇(α)
X Y,Z) := h(∇(0)

X Y,Z)− α

2
C(X,Y, Z).

Then, the connections ∇(α) and ∇(−α) are torsion-free affine connections

mutually dual with respect to h, and the covariant derivative ∇(α)h is totally

symmetric. Hence (M,∇(α), h) and (M,∇(−α), h) are statistical manifolds.

The connection ∇ is flat if and only if ∇∗ is flat. In this case, we say

that (M,h,∇,∇∗) is a dually flat space. Since the connection ∇ is flat,

there exists an affine coordinate system {θi} on M . In addition, there exits

a ∇∗-affine coordinate system {ηi} such that

h

(
∂

∂θi
,
∂

∂ηj

)
= δji .

We say that {ηi} is the dual coordinate system of {θi} with respect to h.

Proposition 1.3. Let (M,h,∇,∇∗) be a dually flat space. Suppose that

{θi} is a ∇-affine coordinate system, and {ηi} is the dual coordinate system

of {θi}. Then there exist functions ψ and ϕ on M such that

∂ψ

∂θi
= ηi,

∂ϕ

∂ηi
= θi, ψ(p) + ϕ(p)−

n∑
i=1

θi(p)ηi(p) = 0. (3)

In addition, the following formulas hold:

hij =
∂2ψ

∂θi∂θj
, hij =

∂2ϕ

∂ηi∂ηj
, (4)
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where (hij) is the component matrix of a semi-Riemannian metric h with

respect to {θi}, and (hij) is the inverse matrix of (hij).

The functions ψ and ϕ are called the θ-potential and the η-potential, re-

spectively. The relation (3) is called the Legendre transformation. From

Equation (4), the semi-Riemannian metric h is a Hessian metric. Hence we

also say that (M,∇, h) is a Hessian manifold [15].

Definition 1.1. We say that a function ρ on M ×M is the (canonical)

divergence on (M,h,∇,∇∗) if

ρ(p||q) := ψ(p) + ϕ(q)−
n∑

i=1

θi(p)ηi(q), (p, q ∈M). (5)

We remark that the definition of ρ is independent of the choice of affine

coordinate system on M .

1.3. Generalized conformal relations on statistical

manifolds

We give a brief summary of generalized conformal relations on statistical

manifolds. Generalized conformal structures on statistical manifolds have

been studied in affine differential geometry (see [5, 6, 7, 8]).

Definition 1.2. Suppose (M,∇, h) and (M, ∇̄, h̄) are statistical manifolds.

We say that (M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent

if there exist two functions κ and λ such that

h̄(X,Y ) = eκ+λh(X,Y ),

∇̄XY = ∇XY − h(X,Y )gradhλ+ dκ(Y )X + dκ(X)Y,

where gradhλ is the gradient vector field of λ with respect to h.

In particular, for a constant α ∈ R, we say that two statistical manifolds

are α-conformally equivalent if there exists a function λ on M such that

h̄(X,Y ) = eλh(X,Y ),

∇̄XY = ∇XY −
1 + α

2
h(X,Y )gradhλ+

1− α
2
{dλ(Y )X + dλ(X)Y } .

A statistical manifold (M,∇, h) is called α-conformally flat if (M,∇, h) is
locally α-conformally equivalent to some flat statistical manifold.

We remark that the conformal-projective equivalence relation or the

α-conformal equivalence relation are natural generalizations of conformal
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equivalence relation for Riemannian manifolds. In fact, suppose that (M, g)

and (M, ḡ) are Riemannian manifolds, and ∇(0) and ∇̄(0) denote their Levi-

Civita connections. If g and ḡ are conformally equivalent, then the following

formulas fold.

ḡ(X,Y ) = e2λg(X,Y ),

∇̄(0)
X Y = ∇(0)

X Y − h(X,Y )gradhλ+ dλ(Y )X + dλ(X)Y.

This implies that (M,∇(0), g) and (M, ∇̄(0), ḡ) are 0-conformally equivalent.

To describe generalized conformal structures, let us introduce contrast

functions. Let ρ be a function on M ×M . We define a function on M by

ρ[X1 · · ·Xi|Y1 · · ·Yj ](p) = (X1)p · · · (Xi)p(Y1)q · · · (Yj)qρ(p||q)|p=q,

where X1, · · ·Xi, Y1 · · ·Yj are arbitrary vector fields on M . We call ρ a

contrast function on M if

ρ(p||p) = 0 (p ∈M),

ρ[X|] = ρ[|X] = 0,

h(X,Y ) := −ρ[X|Y ] is a semi-Riemannian metric on M.

We remark that the canonical divergence on a dually flat space is a typical

example of contrast function.

For a given contrast function ρ on M , we can define a torsion-free affine

connection by the following formula:

h(∇XY, Z) := −ρ[XY |Z].

The triplet (M,∇, h) is a statistical manifold. We say that (M,∇, h) is

induced from the contrast function ρ. If we exchange the arguments as

ρ∗(p||q) := ρ(q||p), then ρ∗ is also a contrast function and induces the

dual statistical manifold (M,∇∗, h). For geometry of contrast functions,

the following results are known ([7, 8]).

Proposition 1.4. Let ρ and ρ̄ be contrast functions on M , and let λ be a

function on M . Suppose that (M,∇, h) and (M, ∇̄, h̄) are statistical mani-

folds induced from ρ and ρ̄, respectively.

(1) If ρ̄(p||q) = eλ(p)ρ(p||q), then two statistical manifolds (M,∇, h) and

(M, ∇̄, h̄) are (−1)-conformally equivalent.

(2) If ρ̄(p||q) = eλ(q)ρ(p||q), then two statistical manifolds (M,∇, h) and

(M, ∇̄, h̄) are 1-conformally equivalent.



June 8, 2011 12:11 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6˙ICDG2010

62 H. MATSUZOE AND A. OHARA

2. Geometry for q-exponential families

In this section, we discuss geometry of q-exponential families. A q-

exponential family is a generalization of the standard exponential family.

We will consider conformal relations between the standard information ge-

ometry and the q-Fisher geometry.

2.1. The q-escort probability and the q-expectation

To begin with, we review the notion of the escort probability and the q-

expectation. Suppose that p(x) is a probability distribution on X . For a

fixed number q, we define the q-escort distribution Pq(x) of p(x) by

Pq(x) :=
1

Ωq(p)
p(x)q, Ωq(p) :=

∫
X
p(x)qdx.

Let f(x) be a random variable on X . The q-expectation of f(x) is the

expectation with respect to the q-escort distribution, that is,

Eq,p[f(x)] :=

∫
X
f(x)Pq(x)dx =

1

Ωq(p)

∫
X
f(x)p(x)qdx.

If the sample space X is discrete, the q-escort distribution or the q-

expectation can be defined by replacing the integral
∫
· · · dx with the sum∑

x∈X .

2.2. The q-exponential family

Next, we define the q-exponential and the q-logarithm. Suppose that q is a

fixed positive number. Then the q-exponential function is defined by

expqx :=

{
(1 + (1− q)x)

1
1−q , q ̸= 1, (1 + (1− q)x > 0),

expx, q = 1,
(6)

and the q-logarithm function by

logq x :=

{
x1−q−1
1−q , q ̸= 1, (x > 0),

log x, q = 1.

If we consider the limit q → 1, the q-exponential and the q-logarithm re-

cover the standard exponential and the standard logarithm, respectively.

For simplicity, we assume that the variable x in (6) satisfy the condition

1+ (1− q)x > 0 if we consider q-exponential function. Hence q-exponential

and q-logarithm function are always mutually inverse functions.
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Definition 2.1. A statistical model Sq = {p(x, θ) | θ ∈ Θ ⊂ Rn } is called
a q-exponential family if

Sq :=

{
p(x, θ)

∣∣∣∣∣ p(x; θ) = expq

[
n∑

i=1

θiFi(x)− ψ(θ)

]}
,

where F1(x), . . . , Fn(x) are random variables on the sample space X , and
ψ(θ) is a function on the parameter space Θ.

The information geometric structure of the q-exponential family is closely

related to the (1 − 2q)- and the (2q − 1)-connections. Hence we fix the

relations of two parameters q and α as 1− 2q = α.

Example 2.1 (q-normal distributions). A q-normal distribution is the

probability distribution defined by the following formula:

p(x;µ, σ) =
1

Zq,σ

[
1− 1− q

3− q
(x− µ)2

σ2

] 1
1−q

+

,

where [∗]+ = max{0, ∗}, {µ, σ} are parameters −∞ < µ < ∞, 0 < σ < ∞,

and Zq,σ is the normalization defined by

Zq,σ =


√
3−q√
1−q

Beta
(

2−q
1−q ,

1
2

)
σ, (−∞ < q < 1),

√
3−q√
q−1

Beta
(

3−q
2(q−1) ,

1
2

)
σ, (1 ≤ q < 3).

Set

θ1 =
2

3− q
Zq−1
q,σ ·

µ

σ2
,

θ2 = − 1

3− q
Zq−1
q,σ ·

1

σ2
,

ψ(θ) = − (θ1)2

4θ2
−
Zq−1
q,σ − 1

1− q
,

then

logq pq(x) =
1

1− q
(p1−q − 1)

=
1

1− q

{
1

Z1−q
q,σ

(
1− 1− q

3− q
(x− µ)2

σ2

)
− 1

}
=

2µZq−1
q,σ

(3− q)σ2
x−

Zq−1
q,σ

(3− q)σ2
x2 −

Zq−1
q,σ

3− q
· µ

2

σ2
+
Zq−1
q,σ − 1

1− q
= θ1x+ θ2x2 − ψ(θ).

This implies that the set of q-normal distributions is a q-exponential family.
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We remark that q-normal distributions include several important proba-

bility distributions. If q = 1, then the q-normal distribution is the normal

distribution, of course. If q = 2, then the distribution is the Cauchy distri-

bution. If q = 1+1/(n+1), then the distribution is Student’s t-distribution.

We also remark that mathematical properties of q-normal distributions have

been obtained by several authors. See [16, 17], for example.

Example 2.2 (discrete distributions). Suppose that the sample space

X is a finite discrete set. Then the set of all probability distributions on X
is given by

Sn =

{
p(x, η)

∣∣∣∣∣ ηi > 0,
n+1∑
i=1

ηi = 1, p(x; η) =
n+1∑
i=1

ηiδi(x)

}
,

where δi(x) equals one if x = i and zero otherwise. Set

θi =
1

1− q
{
(ηi)

1−q − (ηn+1)
1−q
}
,

ψ(θ) = − logq ηn+1,

then we obtain

logq pq(x) =
1

1− q
{
p1−q(x)− 1

}
=

1

1− q

{
n+1∑
i=1

(ηi)
1−qδi(x)− 1

}

=
1

1− q

{
n∑

i=1

(
(ηi)

1−q − (ηn+1)
1−q
)
δi(x) + (ηn+1)

1−q − 1

}

=
n∑

i=1

θiδi(x)− ψ(θ).

This implies that the set of discrete distributions is a q-exponential family.

We note that this also holds in the case q = 1, that is, the set of discrete

distribution is an exponential family.

2.3. Geometry for q-exponential families

For a q-exponential family Sq = {p(x; θ)}, we assume that the potential

function ψ is strictly convex. We define the q-Fisher metric and the q-cubic

form in the same manner as exponential families (1) and (2):

gqij(θ) = ∂i∂jψ(θ),

Cq
ijk(θ) = ∂i∂j∂kψ(θ).
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Since gq is a Hessian metric on {Sq}, we can define a flat affine connection

∇q(e) = ∇q(1) by

gq(∇q(e)
X Y,Z) = gq(∇q(0)

X Y,Z)− 1

2
Cq(X,Y, Z),

where ∇q(0) is the Levi-Civita connection with respect to the q-Fisher met-

ric gq. In this case, the parameters {θi} is a ∇q(e)-affine coordinate system.

We denote by ∇q(m) the dual connection of ∇q(e) with respect to gq. We

call ∇q(e) the q-exponential connection and ∇q(m) the q-mixture connection.

Since ∇q(e) is flat, then ∇q(m) is also flat. Hence we immediately obtain

the following proposition.

Proposition 2.1. Let Sq be a q-exponential family. Then the tetrad

(Sq, g
q,∇q(e),∇q(m)) is a dually flat space.

Let Sq be a q-exponential family. From a direct calculation, we have

∂ip(x; θ) = p(x; θ)q(Fi(x)− ∂iψ(θ)),

where ∂i = ∂/∂θi. Since
∫
X ∂ip(x, θ)dx = ∂i

∫
X p(x, θ)dx = 0, we obtain

∂iψ(θ) =
1

Ωq(p)

∫
X
Fi(x)p(x; θ)

qdx =

∫
X
Fi(x)Pq(x)dx.

This implies that the q-mixture parameters are given by the q-expectation

of the random variables {Fi}. Hence we conclude

Proposition 2.2. Let Sq be a q-exponential family. Then the q-mixture pa-

rameters {ηi} are given by the q-expectation of the random variables Fi(x),

that is,

ηi =
∂

∂θi
ψ(θ) =

∫
X
Fi(x)Pq(x; θ)dx.

Next, we consider relations between the standard Fisher structure and

the q-Fisher structure from the viewpoint of contrast functions.

For a q-exponential distribution Sq, we denote by ρq the canonical di-

vergence (5).

Proposition 2.3. Let Sq be a q-exponential family. Then the canonical

divergence ρq on Sq is given by

ρq(p(θ
′)||p(θ)) = Eq,p(θ)[logq p(θ)− logq p(θ

′)].
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Proof. Since (Sq, g
q,∇q(e),∇q(m)) is a dually flat space, the q-Fisher met-

ric has a potential function ψ. We denote ϕ by the dual potential function

of ψ. For probability distributions p(θ) and p(θ′) in Sq, using the Legendre

duality (3), we obtain

Eq,p(θ)[logq p(θ)− logq p(θ
′)]

=

∫
X

(
n∑

i=1

θiFi(x)− ψ(θ)−
n∑

i=1

(θ′)iFi(x) + ψ(θ′)

)
Pq(x; θ)dx

=

n∑
i=1

θiηi − ψ(θ)−
n∑

i=1

(θ′)iηi(x) + ψ(θ′)

= ψ(θ′) + ϕ(θ)−
n∑

i=1

(θ′)iηi

= ρq(p(θ
′)||p(θ)).

We remark that the canonical divergence ρq(p(θ)||p(θ′)) induces the sta-

tistical manifold (Sq,∇q(e), gq) and the dual divergence ρ∗q(p(θ)||p(θ′)) :=

ρq(p(θ
′)||p(θ)) induces (Sq,∇q(m), gq). The q-exponential family also has

another divergence, called the divergence of Csiszár type ρCq , which is de-

fined by

ρCq (p(θ)||p(θ′)) :=
1

1− q

{
1−

∫
X
p(θ)qp(θ′)1−qdx

}
.

This is essentially equivalent to the q times of the (1 − 2q)-divergence in

information geometry. The divergence (1/q)ρCq induces the statistical man-

ifold (Sq,∇(1−2q), gF ).

Proposition 2.4. Suppose that ρq and ρCq are the canonical divergence

and the divergence of Csiszár type on a q-exponential family, respectively.

Denote by Ωq(p(θ)) the normalization for the q-escort distribution of p(θ).

Then ρq and ρCq satisfy

ρq(p(θ
′)||p(θ)) = 1

Ωq(p(θ))
ρCq (p(θ)||p(θ′)).

Proof. From Proposition 2.3 we obtain

ρq(p(θ
′)||p(θ)) = Eq,p(θ)[logq p(θ)− logq p(θ

′)]

=

∫
X

(
p(θ)1−q − 1

1− q
− p(θ′)1−q − 1

1− q

)
p(θ)q

Ωq(p(θ))
dx



July 5, 2011 10:27 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6˙ICDG2010

GEOMETRY FOR q-EXPONENTIAL FAMILIES 67

=
1−

∫
X p(θ)

qp(θ′)1−qdx

(1− q)Ωq(p(θ))

=
1

Ωq(p(θ))
ρCq (p(θ)||p(θ′)).

Theorem 2.1. For a q-exponential family {Sq}, statistical manifolds

(Sq,∇q(e), gq) and (Sq,∇(2q−1), gF ) are 1-conformally equivalent.

Proof. Recall that ρq(p(θ)||p(θ′)) induces (Sq,∇q(e), gq). From duality

of contrast function, (1/q)ρC∗
q (p(θ)||p(θ′)) = (1/q)ρCq (p(θ

′)||p(θ)) induces

(Sq,∇(2q−1), gF ). From Proposition 2.4, we have

ρq(p(θ)||p(θ′)) =
1

Ωq(p(θ′))
ρCq (p(θ

′)||p(θ)) = 1

Ωq(p(θ′))
ρC∗
q (p(θ)||p(θ′)).

This implies that two statistical manifolds are 1-conformally equivalent

from Proposition 1.4.

We remark that this theorem was already obtained in the case that the

sample space X is discrete ([13, 14]). For the dual statistical manifolds, we

obtain the following corollary immediately.

Corollary 2.1. For a q-exponential family {Sq}, two statistical manifolds

(Sq,∇q(m), gq) and (Sq,∇(1−2q), gF ) are (−1)-conformally equivalent.

Since (Sq, g
q,∇q(e),∇q(m)) is dually flat, we also obtain the following

corollary.

Corollary 2.2. For a q-exponential family {Sq}, the statistical mani-

fold (Sq,∇(2q−1), gF ) is 1-conformally flat, and (Sq,∇(1−2q), gF ) is (−1)-
conformally flat.

For generalization of exponential families, several results have been ob-

tained in more generalized frameworks (see [4, 10, 11, 12]). If we consider

relations between the standard Fisher geometry and dually flat structures

for them as in our paper, some suitable assumptions may be required.

3. An application to statistical inferences

In this section, we discuss an application of geometry of q-exponential fam-

ilies to statistical inferences along the author’s explanatory report [9].
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3.1. Generalization of independence

At first, let us recall the independence of random variables. Suppose that X

and Y are random variables which belong to probability density functions

p1(x) and p2(y), respectively. We say that X and Y are independent if the

joint probability density function p(x, y) is defined by the product of the

marginal probability density functions, that is,

p(x, y) = p1(x)p2(y).

We assume that p1(x) and p2(y) are positive everywhere on the sample

space. Then the above equation can be written as follows:

p(x, y) = p1(x)p2(y) = exp [log p1(x) + log p2(x)] .

This implies that the notion of independence depends on the duality of the

exponential function and the logarithm function, or the law of exponents.

Hence we can generalize the notion of independence from the viewpoint of

q-exponential functions.

For a fixed positive number q, we assume that x > 0, y > 0 and x1−q +

y1−q − 1 > 0. The q-product [2] of x and y is defined by

x⊗q y :=
[
x1−q + y1−q − 1

] 1
1−q .

The following properties follow from the definition of q-product.

expq x⊗q expq y = expq(x+ y),

logq(x⊗q y) = logq x+ logq y.

Let us define the notion of q-independence. We say that X and Y are

q-independent with m-normalization (mixture normalization) if the joint

probability density function pq(x, y) is defined by the q-product of the

marginal probability density functions, that is,

pq(x, y) =
p1(x)⊗q p2(y)

Zp1,p2

,

where Zp1,p2 is the normalization defined by

Zp1,p2 =

∫ ∫
XY

p1(x)⊗q p2(y)dxdy.

Since the q-product of probability density functions p1(x)⊗q p2(y) is not a

probability density in general, a suitable normalization is required [4].
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3.2. Geometry for q-likelihood estimators

Let S = {p(x; ξ)|ξ ∈ Ξ} be a statistical model, and let {x1, . . . , xN} be

N -independent observations generated from a probability density function

p(x; ξ) ∈ S. We define the q-likelihood function [16] Lq(ξ) by

Lq(ξ) = p(x1; ξ)⊗q p(x2; ξ)⊗q · · · ⊗q p(xN ; ξ).

In the case q → 1, the q-likelihood function Lq is the standard likelihood

function on Ξ. Though Lq may not be a probability density on Ξ, we regard

Lq as a generalization of the likelihood function.

Since q-logarithm functions are strictly increasing, it is equivalent to

consider the q-logarithm q-likelihood function [3]

logq Lq(ξ) =

N∑
i=1

logq p(xi; ξ).

We say that ξ̂ is the maximum q-likelihood estimator if

ξ̂ = arg max
ξ∈Ξ

Lq(ξ)

(
= arg max

ξ∈Ξ
logq Lq(ξ)

)
.

Now let us consider q-likelihood estimator for q-exponential families. Let

Sq be a q-exponential family and let M be a curved q-exponential family

in S. Suppose that {x1, . . . , xN} are N -independent observations generated

from p(x;u) = p(x; θ(u)) ∈M .

Then the q-likelihood function is calculated as

logq Lq(u) =

N∑
j=1

logq p(xj ;u) =

N∑
j=1

{
n∑

i=1

θi(u)Fi(xj)− ψ(θ(u))

}

=
n∑

i=1

θi(u)
N∑
j=1

Fi(xj)−Nψ(θ(u)).

The q-logarithm q-likelihood equation is

∂i logq Lq(u) =
N∑
j=1

Fi(xj)−N∂iψ(θ(u)) = 0.

Thus, the q-likelihood estimator for S is given by

η̂i =
1

N

N∑
j=1

Fi(xj).
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On the other hand, the canonical divergence can be calculated as

ρ∗q(p(η̂)||p(θ(u))) = ρq(p(θ(u))||p(η̂))

= ψ(θ(u)) + ϕ(η̂)−
n∑

i=1

θi(u)η̂i

= ϕ(η̂)− 1

N
logq Lq(u).

Hence the q-likelihood is maximum if and only if the canonical divergence

is minimum. In the same arguments as the standard exponential families,

we can say that the q-likelihood estimator is the orthogonal projection from

η̂ to the model distribution M with respect to ∇q(m)-geodesic. Hence the

q-likelihood estimator is a quite natural generalization of the likelihood

estimator from the viewpoint of differential geometry.

We remark that the q-likelihood can be generalized by U -geometry. The

notion of independence is related to geometric structures on the sample

space [4].
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A Hessian domain constructed with a foliation by
1-conformally flat statistical manifolds

by
Keiko UOHASHI

1

Abstract. A Hessian domain is a flat statistical manifold, and its level surfaces
are 1-conformally flat statistical submanifolds. In this paper we show conditions
that 1-conformally flat statistical leaves of a foliation can be realized as level sur-
faces of their common Hessian domain conversely.

1. Introduction
Let ϕ be a function on a domain Ω in a real affine space An+1. Denoting

by D the canonical flat affine connection on An+1, we set g = Ddϕ and
suppose that g is non-degenerate. Then a Hessian domain (Ω, D, g) is a flat
statistical manifold [8].

Kurose defined α-conformal equivalence and α-conformal flatness of sta-
tistical manifolds [4]. In [9] we proved that n-dimensional level surfaces of
ϕ are 1-conformally flat statistical submanifolds of (Ω, D, g). In addition
we show properties of foliations on Hessian domains with respect to statis-
tical submanifolds in [10]. Hao and Shima studied level surfaces on Hessian
domains deeply in [2] [7]. However they studied foliations and statistical sub-
manifolds for given Hessian domains. We see few results of the realization of
statistical manifolds on Hessian domains. In [9] we show that a 1-conformally
flat statistical manifold can be locally realized as a submanifold of a flat sta-
tistical manifold, constructing a level surface of a Hessian domain. However
we proved realization of only ”a” 1-conformally flat statistical manifold. In
this paper we give conditions for realization of 1-conformally flat statistical
manifolds as level surfaces of their common Hessian domain.

1 2010 Mathematics Subject Classification. 53A15
Key words. Hessian domain, level surface, foliation, statistical manifold, conformally

flat.

1



In section 2 we recall properties of Hessian domains, statistical manifolds
and affine differential geometry. In section 3 we prove a theorem on realiza-
tion of 1-conformally flat statistical leaves. In section 4 we show necessity of
the conditions described in the theorem.

2. Hessian domains and Statistical manifolds
Let D and {x1, . . . , xn+1} be the canonical flat affine connection and the

canonical affine coordinate system on An+1, i.e., Ddxi = 0. If the Hes-
sian Ddϕ =

∑
i,j(∂

2ϕ/∂xi∂xj)dxidxj is non-degenerate for a function ϕ on a
domain Ω in An+1, we call (Ω, D, g = Ddϕ) a Hessian domain. For a torsion-
free affine connection ∇ and a pseudo-Riemannian metric h on a manifold
N , the triple (N,∇, h) is called a statistical manifold if ∇h is symmetric. If
the curvature tensor R of ∇ vanishes, (N,∇, h) is said to be flat. A Hes-
sian domain (Ω, D, g = Ddϕ) is a flat statistical manifold. Conversely, a flat
statistical manifold is locally a Hessian domain [1][8].

For a statistical manifold (N,∇, h), let ∇′ be an affine connection on N
such that

Xh(Y, Z) = h(∇XY, Z) + h(Y,∇′
XZ), for X,Y and Z ∈ TN,

where TN is the set of all tangent vector fields on N . The affine connection ∇′

is torsion free, and ∇′h symmetric. Then ∇′ is called the dual connection of
∇, the triple (N,∇′, h) the dual statistical manifold of (N,∇, h), respectively.

Let A∗
n+1 and {x∗

1, . . . , x
∗
n+1} be the dual affine space of An+1 and the

dual affine coordinate system of {x1, . . . , xn+1}, respectively. We define the
gradient mapping ι from Ω to A∗

n+1 by

x∗
i ◦ ι = − ∂ϕ

∂xi
,

and a flat affine connection D′ on Ω by

ι∗(D
′
XY ) = D∗

Xι∗(Y ) for X,Y ∈ TΩ,

where D∗
Xι∗(Y ) is covariant derivative along ι induced by the canonical flat

affine connection D∗ on A∗
n+1. Then (Ω, D′, g) is the dual statistical manifold

of (Ω, D, g).
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For α ∈ R, statistical manifolds (N,∇, h) and (N, ∇̄, h̄) are said to be
α-conformally equivalent if there exists a function φ on N such that

h̄(X,Y ) = eφh(X,Y ),

h(∇̄XY, Z) = h(∇XY, Z) − 1 + α

2
dφ(Z)h(X,Y )

+
1 − α

2
{dφ(X)h(Y, Z) + dφ(Y )h(X,Z)}

for X,Y and Z ∈ TN . A statistical manifold (N,∇, h) is called α-conformally
flat if (N,∇, h) is locally α-conformally equivalent to a flat statistical man-
ifold. Statistical manifolds (N,∇, h) and (N, ∇̄, h̄) are α-conformally equiv-
alent if and only if the dual statistical manifolds (N,∇′, h) and (N, ∇̄′, h̄)
are (−α)-conformally equivalent. Especially, a statistical manifold (N,∇, h)
is 1-conformally flat if and only if the dual statistical manifold (N,∇′, h) is
(−1)-conformally flat [4].

Henceforth, we suppose that g is positive definite.
Let Ẽ be the gradient vector field of ϕ on Ω defined by

g(X, Ẽ) = dϕ(X) for X ∈ TΩ,

where TΩ is the set of all tangent vector fields on Ω. We set

E = −dϕ(Ẽ)−1Ẽ on Ωo = {p ∈ Ω | dϕp 6= 0}.

For p ∈ Ωo, Ep is perpendicular to TpM with respect to g, where M ⊂ Ωo is
a level surface of ϕ containing p and TpM is the set of all tangent vectors at
p on M .

Let x be a canonical immersion of an n-dimensional level surface M into
Ω. For D and an affine immersion (x,E), we can define the induced affine
connection DE, the affine fundamental form gE on M by

DXY = DE
XY + gE(X,Y )E for X,Y ∈ TM.

We denote by DM and gM the connection and the Riemannian metric on
M induced by D and g. Then the triple (M,DM , gM) is the statistical sub-
manifold realized in (Ω, D, g), which coincides with the manifold (M,DE, gE)
induced by an affine immersion (x,E). This fact leads the next theorem.
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Theorem 2.1. ([9]) Let M be a simply connected n-dimensional level sur-
face of ϕ on an (n + 1)-dimensional Hessian domain (Ω, D, g = Ddϕ) with
a Riemannian metric g, and suppose that n ≥ 2. If we consider (Ω, D, g) a
flat statistical manifold, (M,DM , gM) is a 1-conformally flat statistical sub-
manifold of (Ω, D, g), where we denote by DM and gM the connection and
the Riemannian metric on M induced by D and g.

Conversely, on realization of a 1-conformally flat statistical manifold we
have:

Theorem 2.2. ([9]) An arbitrary 1-conformally flat statistical manifold
of dim n ≥ 2 with a Riemannian metric can be locally realized as a subman-
ifold of a flat statistical manifold of dim(n + 1).

3. Foliations constructed by 1-conformally flat statistical mani-
folds

Let F be a foliation on a differentiable manifold N of dimension n ≥
2 and codimension 1, and for a leaf M ∈ F the triple (M,∇M , hM) a 1-
conformally flat statistical manifold. Suppose that a non-degenerate affine
immersion (xM , EM) realizes (M,∇M , hM) in An+1, and that a mapping
x : N → Ω defined by x(p) = xM(p) for p ∈ M is a diffeomorphism, where
Ω = ∪M∈FxM(M) ⊂ An+1 is a domain diffeomorphic to N .

We set ιM is the conormal immersion for xM , i.e., denoting by 〈a, b〉 a
pairing of a ∈ A∗

n+1 and b ∈ An+1,

〈ιM(p), Yp〉 = 0 for Yp ∈ TpM, 〈ιM(p), EM
p 〉 = 1

for p ∈ M , considering TpA
n+1 with An+1. the immersion ιM satisfies that

〈ιM∗ (Y ), EM〉 = 0, 〈ιM∗ (Y ), X〉 = −hM(Y,X) for X,Y ∈ TM

Moreover the conormal immersion ιM is equiaffine, i.e.,

DXEM = SEM

(X) ∈ TM for X ∈ TM

(We call SEM
the shape operator.) [5] [6] [9]. With notations in this section,

we can describe

DXY = ∇M
X Y + hM(X,Y )EM for X,Y ∈ TM.
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Then the next theorem holds.

Theorem 3.1. If a foliation F satisfies the following conditions, each
1-conformally flat statistical leaf (M,∇M , hM) of F is realized as a level sur-
face of the common Hessian domain:
(i) a mapping E : N → An+1 defined by E(p) = EM(p) for p ∈ M is differ-
enciable;
(ii) a mapping ι : N → Ω∗ defined by ι(p) = ιM(p) for p ∈ M is a diffeomor-
phism, where Ω∗ = ∪M∈F ιM(M) ⊂ A∗

n+1;
(iii) DEE = µE for µ ∈ R ;
(iv) SEM

(X) = −(dλ(E) + 1)(X) on M , where λ is a function on N such
that eλ(p̂)ι(p) = ι(p̂), p̂ ∈ N for p ∈ M .

Proof. We consider a manifold N a domain Ω ⊂ An+1, and define a
metric g on Ω by

g(Y,X) = hM(Y,X), g(E,E) = 1,

g(Y,E) = 0 for X,Y ∈ TM ⊂ TΩ.

Let us prove that (D, g) satisfies the Codazzi equation

(DXg)(Y, Z) = (DY g)(X,Z) for all X,Y and Z ∈ TΩ.

In the case of X,Y and Z ∈ TM , we have

(DXg)(Y, Z) = X(g(Y, Z)) − g(DXY, Z) − g(Y,DXZ)

= X(hM(Y, Z)) − g(∇M
X Y, Z) − g(Y,∇M

X Z)

= (∇M
X hM)(Y, Z).

Similarly it holds that

(DY g)(X,Z) = (∇M
Y hM)(X,Z).

Recall the Codazzi equation for an equiaffine immersion (xM , EM);

(∇M
X hM)(Y, Z) = (∇M

Y hM)(X,Z)

[6]. Then we have the Codazzi equation for (D, g).
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In the case of X,Y ∈ TM and E on M , we have

(DXg)(Y,E) = X(g(Y,E)) − g(hM(X,Y )E,E) − g(Y,DXE)

= −hM(X,Y ) − hM(Y, SEM

(X)).

Similarly it holds that

(DY g)(X,E) = −hM(X,Y ) − hM(X,SEM

(Y )).

Recall the Ricci equation for an equiaffine immersion (xM , EM);

hM(SEM

(X), Y ) = hM(X,SEM

(Y ))

[6]. Then we have the Codazzi equation

(DXg)(Y,E) = (DY g)(X,E).

In the case of X,Z ∈ TM and E on M , similarly we have

(DXg)(E,Z) = −hM(X,Z) − hM(SEM

(X), Z).

Now recall a property 〈ιM∗ (X), EM〉 = 0, X ∈ TM and the condition (iii)
DEE = µE. Then we have DEX = 0 for X ∈ TM . In addition, conor-
mal immersions {(ιM̂ , hM̂)}M̂∈F are projectively equivalent and conformally

equivalent, and it holds that hM̂ = eλhM [6]. Hence for p ∈ M the next
follows;

E(g(X,Z))|p = E(eλhM(X,Z))|p = (Eeλ)|phM(X,Z)

= (Eλ)|peλ(p)hM(X,Z) = dλ(E)|phM(X,Z).

Thus it holds that

(DEg)(X,Z) = E(g(X,Z)) − g(DEX,Z) − g(X,DEZ)

= dλ(E)|phM(X,Z).

By the condition (iv) we have the Codazzi equation

(DXg)(E,Z) = (DEg)(X,Z).
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In the case of X ∈ TM and E on M , we have

(DXg)(E,E) = X(g(E,E)) − g(g(X,E)E,E) − g(E, g(X,E)E) = 0.

Moreover by DEX = 0 and DEE = µE it holds that

(DEg)(X,E) = X(g(X,E)) − g(DEX,E) − g(X,DEE) = 0.

Thus we have the Codazzi equation

(DXg)(E,E) = (DEg)(X,E).

In the case of X = Y = E and Z ∈ TΩ, clearly we have

(DXg)(Y, Z) = (DY g)(X,Z) = (DEg)(E,Z).

Hence (D, g) satisfies the Codazzi equation. Thus g is a Hessian metric
by Proposition 2.1 on [8]. By the definition of g we can consider that each
leaf (M,∇M , hM) of F is a level surface of the Hessian domain (Ω, D, g). 2

4. Necessity of the conditions
In this section we show that level surfaces of Hessian domain satisfy the

conditions of Theorem 3.1.
Let (Ω, D, g = Ddϕ) be a simply connected (n + 1)-dimensional Hes-

sian domain, and (M,DM , gM) an n-dimensional 1-conformally flat statistical
submanifold on a level surface M of ϕ.

It is clear that a mapping E : Ω → An+1 defined by E(p) = EM(p) for
p ∈ M is differenciable, where an immersion (xM , EM) realizes (M,DM , gM)
in An+1. It is also clear that the gradient mapping ι : Ω → Ω∗ = ι(Ω)
is a diffeomorphism and coincides with the conormal immersion for xM on
M . Thus each level surface (M,DM , gM) satisfies the conditions (i) (ii) of
Theorem 3.1.

For proof of the condition (iii), we calculate each (DEg)(E,X) and (DXg)(E,E)
for X ∈ TM . By the definitions of the gradient vector field Ẽ for g and the
conormal vector field E = −dϕ(Ẽ)−1Ẽ, we have

(DEg)(E,X) = E(g(E,X)) − g(DEE,X) − g(E,DEX)

= −g(DEE,X) − dϕ(Ẽ)−2dϕ(DẼX)

= −g(DEE,X) − dϕ(Ẽ)−2(Ẽ(dϕ(X)) − (DẼdϕ)(X))

= −g(DEE,X).
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In the above we also make use of dϕ(X) = 0 and (DẼdϕ)(X) = g(Ẽ,X) = 0.
Moreover it holds that

(DXg)(E,E) = X(g(E,E)) − 2g(DXE,E) = −2g(SEM

(X), E) = 0.

From the Codazzi equation for (D, g), it follows that

(DEg)(E,X) = (DXg)(E,E) = 0.

Thus DEE = µE for µ ∈ R. Therefore (M,DM , gM) satisfies the condition
(iii) of Theorem 3.1.

Remark 4.1. Hao and Shima calculated (DẼg)(Ẽ,X) and (DXg)(Ẽ, Ẽ)
not for (x, E) but for (x, Ẽ), and showed that the transversal connection form

τ Ẽ vanishes if and only if DẼẼ = µẼ [2][8]. We gave the above calculation
with their technique.

For proof of the condition (iv), we calculate each (DXg)(E,Z) and (DEg)(X,Z)
for X,Z ∈ TM . By calculation appeared in proof of Theorem 3.1, we have

(DXg)(E,Z) = −g(X,Z) − g(SEM

(X), Z)

(DEg)(X,Z) = dλ(E)|phM(X,Z),

where λ is a function on Ω defined similar to λ in Theorem 3.1. From the
Codazzi equation for (D, g), it follows that

(DXg)(E,Z) = (DEg)(X,Z).

Thus (M,DM , gM) satisfies the condition (iv) SEM
(X) = −(dλ(E) + 1)(X).

We describe necessity of the conditions (i) to (iv) as follows.

Corollary 4.2. Each 1-conformally flat statistical leaf (M,∇M , hM) of
a foliation F is realized as a level surface of the common Hessian domain if
and only if the F satisfies the conditions (i) to (iv) of Theorem 3.1.
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Last we talk about a projectively flat connection and a dual-projectively
flat connection. Kurose and Ivanov proved the next propositions, respec-
tively.

Proposition 4.3. ([4]) A statistical manifold (N,∇, h) is 1-conformally
flat if and only if the dual connection ∇′ is a projectively flat connection with
symmetric Ricci tensor.

Proposition 4.4. ([3]) A statistical manifold (N,∇, h) is 1-conformally
flat if and only if ∇ is a dual-projectively flat connection with symmetric
Ricci tensor.

Thus we can describe Corollary 4.2 as the next.

Corollary 4.5. Let ∇M be a dual-projectively flat connection with sym-
metric Ricci tensor for all M ∈ F . Then each statistical leaf (M,∇M , hM)
of a foliation F is realized as a level surface of the common Hessian domain
if and only if F satisfies the conditions (i) to (iv) of Theorem 3.1.
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Harmonic maps relative to

α-connections on statistical manifolds

Keiko Uohashi

Abstract. In this paper we study harmonic maps relative to α-connections,
and not always relative to Levi-Civita connections, on statistical mani-
folds. In particular, harmonic maps on α-conformally equivalent statisti-
cal manifolds are discussed, and conditions for harmonicity are given by
parameters α and dimensions n. As the application we also describe har-
monic maps between level surfaces of a Hessian domain with α-conformally
flat connections.

M.S.C. 2010: 53A15, 53C43.
Key words: harmonic map; statistical manifold; dual connection; conformal trans-
formation; Hessian domain.

1 Introduction

Harmonic maps are important to research for geometry, physics, and so on. On
the other hand statistical manifolds have been studied in terms of affine geometry,
information geometry, statistical mechanics, and so on [1]. In relation to them Shima
gave conditions for harmonicity of gradient mappings of level surfaces on a Hessian
domain, which is a typical example for a dually flat statistical manifold [7] [8].

Level surfaces on a Hessian domain are known as 1- and (−1)-conformally flat sta-
tistical manifolds for the primal connection and for the dual connection, respectively
[10]. Then the gradient mappings are considered harmonic maps relative to the dual
connection, i.e., the (−1)-connection. However Shima investigated harmonic maps on
n-dimensional level surfaces into an (n + 1)-dimensional dual affine space, and not
into the other level surfaces. In addition Nomizu and Sasaki calculated the Lapla-
cian of centro-affine immersions into an affine space, which generate projectively flat
statistical manifolds, i.e., (−1)-conformally flat statistical manifolds. However they
show no harmonic maps between two centro-affine hypersurfaces in [6].

Then we treat harmonic maps relative to α-connections between α-conformally
equivalent statistical manifolds including the case of α = −1, 0 (The 0-connection
means the Levi-Civita connection.). In this paper, existence of non trivial harmonic
maps for α-connections is shown with conditions of α-parameters and dimensions n.
Finally, we describe harmonic maps between level surfaces of a Hessian domain for
α-conformally flat connections.

Applied Sciences, Vol.14, 2012, pp. 82-88.
c© Balkan Society of Geometers, Geometry Balkan Press 2012.
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2 Statistical manifolds and α-conformal equivalence

We recall definitions of terms on statistical manifolds.
For a torsion-free affine connection ∇ and a pseudo-Riemannian metric h on a

manifold N , the triple (N,∇, h) is called a statistical manifold if ∇h is symmetric. If
the curvature tensor R of ∇ vanishes, (N,∇, h) is said to be flat.

For a statistical manifold (N,∇, h), let ∇′ be an affine connection on N such that

Xh(Y, Z) = h(∇XY, Z) + h(Y,∇′XZ) for X,Y and Z ∈ Γ(TN),

where Γ(TN) is the set of smooth tangent vector fields on N . The affine connection
∇′ is torsion free, and ∇′h symmetric. Then ∇′ is called the dual connection of ∇, the
triple (N,∇′, h) the dual statistical manifold of (N,∇, h), and (∇,∇′, h) the dualistic
structure on N . The curvature tensor of ∇′ vanishes if and only if that of ∇ does,
and then (∇,∇′, h) is called the dually flat structure [1].

For a real number α, statistical manifolds (N,∇, h) and (N, ∇̄, h̄) are said to be
α-conformally equivalent if there exists a function φ on N such that

(2.1) h̄(X, Y ) = eφh(X,Y ),

(2.2) h(∇̄XY, Z) = h(∇XY, Z)− 1 + α

2
dφ(Z)h(X, Y )

+
1− α

2
{dφ(X)h(Y, Z) + dφ(Y )h(X, Z)}

for X, Y and Z ∈ Γ(TN). Two statistical manifolds (N,∇, h) and (N, ∇̄, h̄) are
α-conformally equivalent if and only if the dual statistical manifolds (N,∇′, h) and
(N, ∇̄′, h̄) are (−α)-conformally equivalent. A statistical manifold (N,∇, h) is called
α-conformally flat if (N,∇, h) is locally α-conformally equivalent to a flat statistical
manifold [4].

3 Harmonic maps for α-conformal equivalence

Let (N,∇, h) and (N, ∇̄, h̄) be α-conformally equivalent statistical manifolds of dim n ≥
2, and {x1, · · ·xn} a local coordinate system on N . Suppose that h and h̄ are Rieman-
nian metrices. We set hij = h(∂/∂xi, ∂/∂xj) and [hij ] = [hij ]−1. Let πid : N → N
be the identity map, i.e., πid(x) = x for x ∈ N , and πid∗ the differential of πid. If
cautioning about metrics and connections, we denote by πid : (N,∇, h) → (N, ∇̄, h̄).

We define a harmonic map relative to (h,∇, ∇̄) as follows.

Definition 3.1. If a tension field τ(h,∇,∇̄)(πid) vanishes, i.e., τ(h,∇,∇̄)(πid) ≡ 0 on N ,
the map πid : (N,∇, h) → (N, ∇̄, h̄) is said to be a harmonic map relative to (h,∇, ∇̄),
where the tension field is defined by

(3.1) τ(h,∇,∇̄)(πid) :=
n∑

i,j=1

hij{∇̄ ∂

∂xi
(πid∗(

∂

∂xj
))− πid∗(∇ ∂

∂xi

∂

∂xj
)} ∈ Γ(π−1

id TN)
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(3.2) =
n∑

i,j=1

hij(∇̄ ∂

∂xi

∂

∂xj
−∇ ∂

∂xi

∂

∂xj
) ∈ Γ(TN).

Then the next theorem holds.

Theorem 3.1. For α-conformally equivalent statistical manifolds (N,∇, h) and (N, ∇̄, h̄)
of dim n ≥ 2 satisfying (2.1) and (2.2), if α = −(n−2)/(n+2) or φ is a constant func-
tion on N , the identity map πid : (N,∇, h) → (N, ∇̄, h̄) is a harmonic map relative
to (h,∇, ∇̄).

Proof. By (2.2) and (3.2), for k ∈ {1, · · · , n} we have

h(τ(h,∇,∇̄)(πid),
∂

∂xk
) = h(

n∑

i,j=1

hij(∇̄ ∂

∂xi

∂

∂xj
−∇ ∂

∂xi

∂

∂xj
),

∂

∂xk
)

=
n∑

i,j=1

hij{−1 + α

2
dφ(

∂

∂xk
)h(

∂

∂xi
,

∂

∂xj
) +

1− α

2
{dφ(

∂

∂xi
)h(

∂

∂xj
,

∂

∂xk
)

+dφ(
∂

∂xj
)h(

∂

∂xi
,

∂

∂xk
)}}

=
n∑

i,j=1

hij{−1 + α

2
∂φ

∂xk
hij +

1− α

2
(
∂φ

∂xi
hjk +

∂φ

∂xj
hik)}

= {−1 + α

2
· n · ∂φ

∂xk
+

1− α

2
(

n∑

i=1

∂φ

∂xi
δik +

n∑

j=1

∂φ

∂xj
δjk)}

= (−1 + α

2
· n +

1− α

2
· 2)

∂φ

∂xk
= −1

2
{(n + 2)α + (n− 2)} ∂φ

∂xk
,

where δij is the Kronecker’s delta. Therefore, if τ(h,∇,∇̄)(πid) ≡ 0, it holds that
(n + 2)α + (n− 2) = 0 or ∂φ/∂xk = 0 for all k ∈ {1, · · · , n} at each point in N . Thus
we obtain Theorem 3.1. ¤

4 α-connections on level surfaces of
a Hessian domain

In this section we show relations with α-connections and Hessian domains.
Let N be a manifold with a dualistic structure (∇,∇′, h). For α ∈ R, an affine

connection defined by

(4.1) ∇(α) :=
1 + α

2
∇+

1− α

2
∇′

is called an α-connection of (N,∇, h). The triple (N,∇(α), h) is also a statistical man-
ifold, and ∇(−α) the dual connection of ∇(α). The 1-connection, the (−1)-connection
and the 0-connection coincide with ∇, ∇′ and the Levi-Civita connection of (N, h),
respectively. An α-connection is not always flat [1].
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Let D and {x1, . . . , xn+1} be the canonical flat affine connection and the canon-
ical affine coordinate system on An+1, i.e., Ddxi = 0. If the Hessian Ddϕ =∑n+1

i,j=1(∂
2ϕ/∂xi∂xj)dxidxj is non-degenerate for a function ϕ on a domain Ω in

An+1, we call (Ω, D, g = Ddϕ) a Hessian domain. A Hessian domain is a flat statis-
tical manifold. Conversely, a flat statistical manifold is locally a Hessian domain [1]
[8].

Let A∗
n+1 and {x∗1, . . . , x∗n+1} be the dual affine space of An+1 and the dual affine

coordinate system of {x1, . . . , xn+1}, respectively. We define the gradient mapping ι
from Ω to A∗

n+1 by

x∗i ◦ ι = − ∂ϕ

∂xi
,

and a flat affine connection D′ on Ω by

ι∗(D′
XY ) = D∗

Xι∗(Y ) for X,Y ∈ Γ(TΩ),

where D∗
Xι∗(Y ) is covariant derivative along ι induced by the canonical flat affine

connection D∗ on A∗
n+1. Then (Ω, D′, g) is the dual statistical manifold of (Ω, D, g)

[7] [8].
For a simply connected level surface M of ϕ with dim n ≥ 2, we denote by DM

and gM the connection and the Riemannian metric on M induced by D and g, respec-
tively. Then (M, DM , gM ) is a 1-conformally flat statistical submanifold of (Ω, D, g)
by Theorem 2.1 in [10].

We consider two simply connected level surfaces of dim n ≥ 2 (M, D, g), (M̂, D̂, ĝ)
1-conformally flat statistical submanifolds of (Ω, D, g). For p ∈ M , let λ be a function
on M such that eλ(p)ι(p) ∈ ι̂(M̂), where ι̂ is the restriction of the gradient mapping ι
to M̂ , and set (eλ)(p) = eλ(p). Note that the function eλ means the projection of M
to M̂ with respect to the dual affine coordinate system of Ω.

We define a map π : M → M̂ by

ι̂ ◦ π = eλι,

denoting also by ι the restriction of the gradient mapping ι to M . We denote by D̄′

an affine connection on M defined by

π∗(D̄′
XY ) = D̂′

π∗(X)π∗(Y ) for X, Y ∈ Γ(TM),

and by ḡ a Riemannian metric on M such that

ḡ(X, Y ) = eλg(X, Y ) = ĝ(π∗(X), π∗(Y )).

Then the next theorem is known (cf. [4] [5]).

Theorem 4.1. ([11]) For affine connections D′, D̄′ on M , we have
(i) D′ and D̄′ are projectively equivalent.
(ii) (M, D′, g) and (M, D̄′, ḡ) are (−1)-conformally equivalent.

We denote by D̄ an affine connection on M defined by

π∗(D̄XY ) = D̂π∗(X)π∗(Y ) for X, Y ∈ Γ(TM).

From duality of D̂ and D̂′, D̄ is the dual connection of D̄′ on M . Then the next
theorem holds (cf. [3] [4]).
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Theorem 4.2. ([11]) For affine connections D, D̄ on M , we have
(i) D and D̄ are dual-projectively equivalent.
(ii) (M, D, g) and (M, D̄, ḡ) are 1-conformally equivalent.

For α-connections D(α), D̄(α) = D(−α) defined similarly to (4.1), we obtain the
next corollary by Theorem 4.1, Theorem 4.2 and by (2.2) with φ = λ [9].

Corollary 4.3. For affine connections D(α), D̄(α) on M , (M,D(α), g) and (M, D̄(α), ḡ)
are α-conformally equivalent.

5 Harmonic maps relative to α-connections on
level surfaces

We denote D̂
(α)
π∗(X)π∗(Y ) by D̂

(α)
X π∗(Y ), considering it in the induced section Γ(π−1TM̂).

Let {x1, . . . , xn} be a local coordinate system on M . A harmonic map between level
surfaces (M, D(α), g) and (M̂, D̂(α), ĝ) is defined as follows.

Definition 5.1. If a tension field τ(g,D(α),D̂(α))(π) vanishes, i.e., τ(g,D(α),D̂(α))(π) ≡ 0

on M , the map π : (M, D(α), g) → (M̂, D̂(α), ĝ) is said to be a harmonic map relative
to (g, D(α), D̂(α)), where the tension field defined by

(5.1) τ(g,D(α),D̂(α))(π) :=
n∑

i,j=1

gij{D̂(α)
∂

∂xi

(π∗(
∂

∂xj
))− π∗(D

(α)
∂

∂xi

∂

∂xj
)} ∈ Γ(π−1TM̂).

Now we give conditions for harmonicity of a map π : M → M̂ relative to
(g,D(α), D̂(α)).

Theorem 5.1. Let (M, D(α), g) and (M̂, D̂(α), ĝ) be simply connected n-dimensional
level surfaces of an (n + 1)-dimensional Hessian domain (Ω, D, g) with n ≥ 2. If
α = −(n − 2)/(n + 2) or λ is a constant function on M , a map π : (M,D(α), g) →
(M̂, D̂(α), ĝ) is a harmonic map relative to (g, D(α), D̂(α)), where

ι̂ ◦ π = eλι, (eλ)(p) = eλ(p), eλ(p)ι(p) ∈ ι̂(M̂), p ∈ M,

and ι, ι̂ are the restrictions of the gradient mapping on Ω to M , M̂ , respectively.

Proof. The tension field of the map π relative to (g,D(α), D̂(α)) is described with
(M, D̄(α), ḡ), which is the pull-back of (M̂, D̂(α), ĝ), as follows.

τ(g,D(α),D̂(α))(π) =
n∑

i,j=1

gij{D̂(α)
∂

∂xi

(π∗(
∂

∂xj
))− π∗(D

(α)
∂

∂xi

∂

∂xj
)}

=
n∑

i,j=1

gij{π∗(D̄(α)
∂

∂xi

∂

∂xj
)− π∗(D

(α)
∂

∂xi

∂

∂xj
)} = π∗(

n∑

i,j=1

gij(D̄(α)
∂

∂xi

∂

∂xj
−D

(α)
∂

∂xi

∂

∂xj
))

Identifying Tπ(x)M with TxM , and considering the definition of π, we have

τ(g,D(α),D̂(α))(π) = eλ
n∑

i,j=1

gij(D̄(α)
∂

∂xi

∂

∂xj
−D

(α)
∂

∂xi

∂

∂xj
).
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By Corollary 4.3, (M, D(α), g) and (M, D̄(α), ḡ) are α-conformally equivalent, so that
we have the equation (2.2) with φ = λ, h = g, ∇ = D(α) and ∇̄ = D̄(α) for X, Y
and Z ∈ Γ(TM). Then it holds similarly to the proof of Theorem 3.1 that for
k ∈ {1, · · · , n}

g(τ(g,D(α),D̂(α))(π),
∂

∂xk
) = g(eλ

n∑

i,j=1

gij(D̄(α)
∂

∂xi

∂

∂xj
−D

(α)
∂

∂xi

∂

∂xj
),

∂

∂xk
)

= eλ
n∑

i,j=1

gij{−1 + α

2
dλ(

∂

∂xk
)g(

∂

∂xi
,

∂

∂xj
) +

1− α

2
{dλ(

∂

∂xi
)g(

∂

∂xj
,

∂

∂xk
)

+dλ(
∂

∂xj
)g(

∂

∂xi
,

∂

∂xk
)}}

= (−1 + α

2
· n +

1− α

2
· 2) eλ ∂λ

∂xk
= −1

2
{(n + 2)α + (n− 2)} eλ ∂λ

∂xk
.

Therefore, if τ(g,D(α),D̂(α))(π) ≡ 0, it holds that (n + 2)α + (n− 2) = 0 or ∂λ/∂xk = 0
for all k ∈ {1, · · · , n} at each point in N . Thus we obtain Theorem 5.1. ¤

Comparing proofs of Theorem 3.1 and Theorem 5.1, we have the following about
two tension fields.

Corollary 5.2. Let π : (M,D(α), g) → (M̂, D̂(α), ĝ) be the map defined at Theorem
5.1, and πid : (M, D(α), g) → (M, D̄(α), ḡ) the identity map, where (M, D̄(α), ḡ) is the
pull-back of (M̂, D̂(α), ĝ) by π. Then it holds that

τ(g,D(α),D̂(α))(π) = eλτ(g,D(α),D̄(α))(πid).

Remark 5.2. For n = 2, if and only if α = 0, there exist harmonic maps πid and π
with non constant functions φ and λ, respectively.

Remark 5.3. For n ≥ 3, it holds that −1 < α < 0 if a map πid or π is a harmonic
map with a non constant function φ or λ, respectively.

Remark 5.4. For α ≤ −1 and α > 0, there exist no harmonic maps πid and π with
non constant functions φ and λ, respectively.
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Escort probability is a certain modification of ordinary probability and a conformally
transformed structure can be introduced on the space of its distributions. In this con-
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1. Introduction

In the research areas of multifractals and nonextensive statistical mechanics, escort

probability1–3 appears in many aspects and is widely recognized as an important

concept. It has been known4,5 that nonextensive entropies are closely connected

with the α-geometry.6,7 Further, we have geometrically studied the space of escort

distributions and reported8–10 that the well-established and abundant structure

(called the dually flat structure) can be introduced by a conformal transformation

of the α-geometry.

The purpose of this contribution is to show that escort probability and the as-

sociated conformal structure are also natural and useful to the other applications.

1250063-1
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First, we discuss the Voronoi partition with respect to the α-divergence (or Rényi

divergence). The Voronoi partitions on the space of probability distributions with

the Kullback–Leibler,11,12 or Bregman divergences13 are useful tools for various

statistical modeling problems involving pattern classification, clustering, likelihood

ratio test and so on. See also the literature14–16 for related problems. The largest ad-

vantage to take account of α-divergences is their invariance under transformations

by sufficient statistics,7,17 which is a significant requirement for those statistical

applications. In computational aspect, the conformal flattening of the α-geometry

enables us to invoke the standard algorithm18,19 using a potential function and an

upper envelop of hyperplanes with the escort probabilities as coordinates. As an-

other application, we explore properties of dynamical systems defined by the escort

transformation and the gradient with respect to the conformal metric. These flows

are fundamental from geometrical viewpoints20 and found to possess interesting

properties.

The paper is organized as follows: Sec. 2 is a short review of properties of infor-

mation geometric structure induced on the family of escort distributions obtained

by the authors.8 Section 3 describes the first application of escort probability and

the conformal geometric structure to α-Voronoi partitions on the simplex. The prop-

erties including computational efficiency of a construction algorithm are discussed.

Further, a formula for α-centroid is touched upon. In Sec. 4, we discuss properties

of dynamical systems related with escort transformation and gradient flows in view

of the conformal geometry.

In the sequel, we use two equivalent parameters q and α following to conventions

of several research areas, but their relation is fixed as q = (1 + α)/2. Additionally,

we assume that q > 0.

2. Preliminary Results

In this section, we review and summarize results in Ref. 8.

Let Sn denote the n-dimensional probability simplex, i.e.

Sn :=

{
p = (pi)

∣∣∣∣∣ pi > 0,

n+1∑
i=1

pi = 1

}
, (1)

and pi, i = 1, . . . , n + 1 denote probabilities of n + 1 states. We introduce the α-

geometric structure6,7 on Sn. Let {∂i}, i = 1, . . . , n be natural basis tangent vector

fields on Sn defined by

∂i :=
∂

∂pi
−

∂

∂pn+1
, i = 1, . . . , n , (2)

where pn+1 = 1−
∑n

i=1 pi. Now we define a Riemannian metric g on Sn called the

1250063-2
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Fisher metric:

gij(p) := g(∂i, ∂j) =
1

pi
δij +

1

pn+1

=

n+1∑
k=1

pk(∂i log pk)(∂j log pk), i, j = 1, . . . , n . (3)

Further, define a torsion-free affine connection ∇(α) called the α-connection, which

is represented in its coefficients with a real parameter α by

Γ
(α)k
ij (p) =

1 + α

2

(
−

1

pk
δkij + pkgij

)
, i, j, k = 1, . . . , n , (4)

where δkij is equal to one if i = j = k and zero otherwise. Then we have the

α-covariant derivative ∇(α), which gives

∇(α)
∂i
∂j =

n∑
k=1

Γ
(α)k
ij ∂k ,

when it is applied to the vector fields ∂i and ∂j . We can define a distance-like

function on Sn × Sn for α 6= ±1 by

D(α)(p, r) =
4

1− α2

{
1−

n+1∑
i=1

(pi)
(1−α)/2(ri)

(1+α)/2

}
,

which we call the α-divergence. The Fisher metric g and the α-connection ∇(α) can

be derived from the α-divergence.7,21

Since ∇(α) and ∇(−α) geometrically play dualistic roles6,7 with respect to g, we

consider the triple (g,∇(α),∇(−α)), which is called the α-geometric structure on

Sn. The properties of the Tsallis entropy are studied through the α-geometry.4,5

While the α-geometric structure for α 6= ±1 is not flat, we reported8 that it can

be flattened via a certain conformal transformation22–25 to a nonstandard dually flat

structure6,7 denoted by (h,∇,∇∗). The theoretical advantage or interesting aspect

of such a conformally flattening is that we can obtain the Legendre structure on Sn

preserving several properties of the α-geometric structure. We summarize the result

in the following proposition by preparing some notation: the escort probability1 Pi

and a function Zq are respectively defined for q ∈ R by

Pi(p) :=
(pi)

q∑n+1
j=1 (pj)

q
, i = 1, . . . , n+ 1, Zq(p) :=

n+1∑
i=1

(pi)
q

q
. (5)

For 0 < q with q 6= 1, we define two functions by

lnq(s) :=
s1−q − 1

1− q
, s ≥ 0, expq(t) := [1 + (1 − q)t]

1/(1−q)
+ , t ∈ R ,

where [t]+ := max{0, t}, and the so-called Tsallis entropy26 by

Sq(p) :=

∑n+1
i=1 (pi)

q − 1

1− q
.

1250063-3
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Note that s = expq(lnq(s)) holds and they respectively recover the usual

logarithmic, exponential function and the Boltzmann–Gibbs–Shannon entropy

−
∑n+1

i=1 pi ln pi when q → 1. For q > 0, lnq(s) is concave on s > 0.

Proposition 1. The dually flat structure (h,∇,∇∗) on Sn is induced via a con-

formal transformation from the α-structure (g,∇(α),∇(−α)) on Sn. The induced

potential functions ψ, ψ∗, and dually flat affine coordinate systems (θ1, . . . , θn) and

(η1, . . . , ηn) are represented as follows :

θi(p) = lnq(pi)− lnq(pn+1), i = 1, . . . , n ,

ηi(p) = Pi(p), i = 1, . . . , n ,

ψ(θ(p)) = − lnq(pn+1) ,

ψ∗(η(p)) =
1

κ
(λ(p)− q) ,

where κ = (1−α2)/4 = q(1−q) is the scalar curvature of the α-structure, θn+1 ≡ 0,

ηn+1 := Pn+1(p) = 1−
∑n

i=1 Pi(p) and λ = 1/Zq is a conformal factor, i.e. h = λg.

Further, the coordinate systems (θ1, . . . , θn) and (η1, . . . , ηn) are ∇- and ∇∗-

affine, respectively.

For the proofs of Proposition 1 and necessary lemmas, see Ref. 27. The result

is extended to the q-exponential family with continuous random variables.9,10

Note that by defining what we call the conformal divergence ρ,

ρ(p, r) := λ(r)D(α)(p, r) =
n+1∑
i=1

−Pi(r) (lnq(pi)− lnq(ri))

= ψ(θ(p)) + ψ∗(η(r)) −
n∑

i=1

θi(p)ηi(r), (6)

we can confirm the Legendre structure, i.e. relations ρ(p,p) = 0, ∀ p ∈ Sn and

ηi =
∂ψ

∂θi
, θi =

∂ψ∗

∂ηi
, i = 1, . . . , n . (7)

The dual potential ψ∗ can be alternatively represented8 in p by

ψ∗ = lnq

(
1

expq(Sq(p))

)
,

which is known as the negative of the normalized Tsallis entropy.28–30 Thus, when

q → 1, we have the standard dually flat structure on Sn as follows:

ψ → − ln pn+1, ψ∗ →
n+1∑
i=1

pi ln pi θi → ln(pi/pn+1), ηi → pi, i = 1, . . . , n .

1250063-4
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Finally, it should be remarked that the both structures (h,∇,∇∗) and

(g,∇(α),∇(−α)) are related in terms of not only the conformality of the metrics

h = λg but also the projective equivalence31 between the connections ∇∗ and

∇(−α),a which implies that a curve on Sn is ∇∗-geodesic if and only if it is ∇(−α)-

geodesic.b More generally, a submanifold in Sn is ∇∗-autoparallel if and only if it

is ∇(−α)-autoparallel. For (h,∇,∇∗), in particular, a submanifold is ∇- (resp. ∇∗-)

autoparallel when the affine coordinates θi (resp. ηi) are affinely parametrized by

βj , j = 1, . . . ,m ≤ n as θi =
∑m

j=1 a
i
jβ

j + ci, for i = 1, . . . , n+ 1 (similarly for ηi).

For example, the q-exponential family

pi = expq{θ
i − ψ̃(β)}, i = 1, . . . , n+ 1 , (8)

where ψ̃ is a normalizing term defined by ψ̃ = θn+1 + ψ, is ∇-autoparallel in a

proper domain of β. These properties are crucially used in the following sections.

Proposition 1 with (7) implies that

Pi =
∂ψ

∂θi
, i = 1, . . . , n (9)

for pi = expq(θ
i − ψ), i = 1, . . . , n and pn+1 = expq(−ψ). This relation can be

regarded as a special case of a known one3,32 for the q-exponential family (8), using

the escort expectation,2

〈〈aj〉〉q :=

n+1∑
i=1

Pia
i
j =

1

qZq

n+1∑
i=1

(pi)
q ∂

∂βj
(lnq(pi) + ψ̃ − ci) =

∂ψ̃

∂βj
,

because (9) is derived when aij = δij , j = 1, . . . , n and ain+1 = ci = 0.

3. Applications to Construction of Alpha-Voronoi Partitions and

Alpha-Centroids

For given m points p1, . . . ,pm on Sn we define α-Voronoi regions on Sn using the

α-divergence as follows:

Vor(α)(pk) :=
⋂
l 6=k

{p ∈ Sn|D(α)(pk,p) < D(α)(pl,p)}, k = 1, . . . ,m .

An α-Voronoi partition (diagram) on Sn is a collection of the α-Voronoi regions and

their boundaries. Note that D(α) approaches the Kullback–Leibler (KL) divergence

if α → −1, andD(0) is called the Hellinger distance. If we use the Rényi divergence33

of order α 6= 1 defined by

Dα(p, r) :=
1

α− 1
ln

n+1∑
i=1

(pi)
α(ri)

1−α

aNote that ∇∗ is projectively equivalent with ∇(α) in Ref. 8 because there we adopted a different
correspondence of parameters: q = (1 − α)/2.
bPrecisely speaking, the term “geodesic” should be replaced by “pre-geodesic”.
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instead of the α-divergence, Vor(1−2α)(pk) gives the corresponding Voronoi region

because of their one-to-one functional relationship.

The standard algorithm using projection of a polyhedron18,19 commonly works

well to construct Voronoi partitions for the Euclidean distance,19 the KL diver-

gence.12 The algorithm is generally applicable if a divergence function is of Bregman

type,13 which is represented by the remainder of the first order Taylor expansion of

a convex potential function in a suitable coordinate system. Geometrically speak-

ing, this implies that i) the divergence is of the form (6) in a dually flat structure

and ii) its affine coordinate system is chosen to realize the corresponding Voronoi

partitions. In this coordinate system with one extra complementary coordinate the

polyhedron is expressed as the upper envelop of m hyperplanes tangent to the

potential function.

A problem for the case of the α-Voronoi partition is that the α-divergence on

Sn cannot be represented as a remainder of any convex potentials. The following

theorem, however, claims that the problem is resolved by Proposition 1, i.e. con-

formally transforming the α-geometry to the dually flat structure (h,∇,∇∗) and

using the conformal divergence ρ and escort probabilities as a coordinate system.

Here, we denote the space of escort distributions by En and represent the point

on En by P = (P1, . . . , Pn) because Pn+1 = 1−
∑n

i=1 Pi.

Theorem 1.

(i) The bisector of pk and pl defined by {p|D(α)(pk,p) = D(α)(pl,p)} is a simul-

taneously ∇(−α)- and ∇∗-autoparallel hypersurface on Sn.

(ii) Let Hk, k = 1, . . . ,m be the hyperplane in En ×R which is respectively tangent

at (P k, ψ
∗(P k)) to the hypersurface {(P , y)|y = ψ∗(P )}, where P k = P (pk).

The α-Voronoi diagram can be constructed on En as the projection of the upper

envelope of Hk’s along the y-axis.

Proof. (i) Consider the ∇(α)-geodesic γ(α) connecting pk and pl, and let p̄ be

the midpoint on γ(α) satisfying D(α)(pk, p̄) = D(α)(pl, p̄). Denote by B the ∇(−α)-

autoparallel hypersurface that is orthogonal to γ(α) and passes p̄. Then, for all

r ∈ B, the modified Pythagorean theorem4,23 implies the following equality:

D(α)(pk, r) = D(α)(pk, p̄) +D(α)(p̄, r)− κD(α)(pk, p̄)D
(α)(p̄, r)

= D(α)(pl, p̄) +D(α)(p̄, r)− κD(α)(pl, p̄)D
(α)(p̄, r) = D(α)(pl, r) .

Hence, B is a bisector of pk and pl. The projective equivalence ensures that B is

also ∇∗-autoparallel.

(ii) Recall the conformal relation (6) between D(α) and ρ, then we see that

Vor(α)(pk) = Vor(conf)(pk) holds on Sn, where

Vor(conf)(pk) :=
⋂
l 6=k

{p ∈ Sn|ρ(pk,p) < ρ(pl,p)} .
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Proposition 1 and the Legendre relations (6) and (7) imply that ρ(pk,p) is repre-

sented with the coordinates (Pi) by

ρ(pk,p) = ψ∗(P )−

(
ψ∗(P k) +

n∑
i=1

∂ψ∗

∂Pi
(P k)(Pi(p)− Pi(pk))

)
,

where P = P (p). Note that a point (P , yk(P )) in Hk is expressed by

yk(P ) := ψ∗(P k) +

n∑
i=1

∂ψ∗

∂Pi
(P k)(Pi(p)− Pi(pk)).

Hence, we have ρ(pk,p) = ψ∗(P ) − yk(P ). We see, for example, that the bisector

on En for pk and pl is represented as a projection of Hk ∩Hl. Thus, the statement

follows.

Figures 1 and 2 taken from Ref. 27 show examples of α-Voronoi partitions for

four common probability distributions on S2: (0.2, 0.7, 0.1), (0.3, 0.3, 0.4), (0.4, 0.4,

0.2), (0.6, 0.1, 0.3) with α = −0.6 and 2. While the left ones are represented with

usual probabilities on S2 (the axis p3 is omitted), right ones are the corresponding

partitions represented with escort probabilities on E2. In right ones of the both fig-

ures, the bisectors are straight line segments on E2 because they are simultaneously

∇(−α)- and ∇∗-geodesics as is proved in (i) of Theorem 1.

Remark 1. Voronoi partitions for broader class of divergences that are not neces-

sarily associated with any convex potentials are theoretically studied34 from more

general affine differential geometric points of views.

On the other hand, the α-divergence can be expressed as a Bregman divergence

if the domain is extended from Sn to the positive orthant Rn+1
+ .5–7 Hence, the

α-geometry on Rn+1
+ is dually flat. Using this property, α-Voronoi partitions on

Rn+1
+ is discussed by Nielsen and Nock.35

However, while both of the above mentioned methods require constructions of

the polyhedrons in the space of dimension d = n + 2, the new one proposed in

this paper does in the space of dimension d = n + 1. Since it is known36 that

the optimal computational time of polyhedrons depends on the dimension d by

O(m logm+m⌊d/2⌋), the new one is better when n is even and m is large.

The next proposition is a simple and relevant application of escort probabilities.

Define the α-centroid c(α) for given m points p1, . . . ,pm on Sn by the minimizer

of the following problem:

min
p∈S

n

m∑
k=1

D(α)(p,pk) .

Proposition 2. The α-centroid c(α) for given m points p1, . . . ,pm on Sn is

represented in escort probabilities by the weighted average of conformal factors

1250063-7
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Fig. 1. An example of α-Voronoi partition on S2 (left) for α = −0.6 (or q = 0.2) and the
corresponding one on E2 (right).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Usual probability p1

U
s
u
a
l
 
p
r
o
b
a
b
i
l
i
t
y
 
p
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Escort probability P1

E
s
c
o
r
t
 
p
r
o
b
a
b
i
l
i
t
y
 
P
2

Fig. 2. An example of α-Voronoi partition on S2 (left) for α = 2 (or q = 1.5) and the corre-
sponding one on E2 (right).

λ(pk) = 1/Zq(pk), i.e.

Pi(c
(α)) =

1∑m
k=1 Zq(pk)

m∑
k=1

Zq(pk)Pi(pk), i = 1, . . . , n+ 1 .

Proof. Let θi = θi(p). Using (6), we have

m∑
k=1

D(α)(p,pk) =

m∑
k=1

Zq(pk)ρ(p,pk) =

m∑
k=1

Zq(pk)

{
ψ(θ)+ψ∗(η(pk))−

n∑
i=1

θiηi(pk)

}
.
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Then the optimality condition is

∂

∂θi

m∑
k=1

D(α)(p,pk) =
m∑

k=1

Zq(pk)(ηi − ηi(pk)) = 0, i = 1, . . . , n ,

where ηi = ηi(p). Thus, the statements for i = 1, . . . , n follow from Proposition 1.

For i = n+ 1, it holds since the sum of the weights is equal to one.

4. Related Dynamical Systems on the Simplex

In this section, we study properties of several dynamical systems naturally asso-

ciated with the escort transformation, the conformal flattening and the resultant

geometric structure.

4.1. Conformal replicator equation

Recall the replicator system on the simplex Sn for given functions fi(p) defined by

ṗi = pi(fi(p)− f̄(p)), i = 1, . . . , n+ 1, f̄(p) :=

n+1∑
i=1

pifi(p) , (10)

which is extensively studied in evolutionary game theory. It is known37 that

(i) the solution of (10) is the gradient flow of a function V (p) satisfying

fi =
∂V

∂pi
, i = 1, . . . , n+ 1 ,

with respect to the Shahshahani metric,38

(ii) the KL divergence is a local Lyapunov function for an equilibrium called the

evolutionary stable state (ESS).

The Shahshahani metric is defined on the positive orthant Rn+1
+ by

g̃ij =

∑n+1
k=1 pk
pi

δij , i, j = 1, . . . , n+ 1 .

Note that a vector X =
∑n

i=1X
i∂i tangent to Sn is represented by a tangent

vector X̃ on Rn+1
+ by X̃ =

∑n+1
k=1 X̃

k∂/∂pk, where X̃
i = X i, i = 1, . . . , n and

X̃n+1 = −
∑n

i=1X
i. Then we see that the Shahshahani metric induces the Fisher

metric g in (3) on Sn because
∑n

i,j gijX
iXj =

∑n+1
k,l g̃klX̃

kX̃ l holds. Further,

the KL divergence is a canonical divergence7 of (g,∇(1),∇(−1)). Thus, the repli-

cator dynamics (10) are closely related with the standard dually flat structure

(g,∇(1),∇(−1)), which associates with exponential and mixture families of proba-

bility distributions.39

In this subsection, motivated by the above two features (i) and (ii), we define

a modified replicator system compatible to the dually flat structure (h,∇,∇∗) and

discuss their properties. See Harper40 for another modification of the replicator

system.
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Consider a metric on Rn+1
+ defined by h̃ := λg̃ and the following modified

replicator system:

ṗi = Zq(p)pi(fi(p)− f̄(p)), i = 1, . . . , n+ 1 . (11)

It is easy to see the above right-hand sides define the vector that is tangent to Sn

and the gradient of a function V with respect to h̃, since
∑n+1

i=1 ṗi = 0 and

h̃(X̃, ṗ) =

n+1∑
i,j=1

h̃ijX̃
iṗj =

n+1∑
i=1

fiX̃
i − f̄

n+1∑
i=1

X̃ i =

n+1∑
i=1

∂V

∂pi
X̃ i ,

respectively, hold for any tangent vector X̃ on Sn. Thus, comparing (10) and (11),

we can conclude as follows:

Proposition 3. The gradient flow of a function V on Sn with respect to the con-

formal metric h is given by (11). Its trajectories coincide with those of (10) while

velocities of time-evolutions are different by the factor Zq(p).

We investigate properties of (11) in the case that V (p) = −ρ(r,p) for a fixed

distribution r. Applying the result for gradient flows of divergences on dually flat

spaces,20 we see that the flow is explicitly given in the ∇-affine coordinates by

θi(p(t)) = exp(−t){θi(p(0))− θi(r)}+ θi(r), i = 1, . . . , n , (12)

i.e. it converges to r along the ∇-geodesic (pregeodesic) curve.

On the other hand, consider the optimization problem maximizing V (p) =

−ρ(r,p) with m constraints of the escort expectations:

〈〈Aj〉〉q =

n+1∑
i=1

Pi(p)A
i
j

=
n∑

i=1

ηi(p)A
i
j +

(
1−

n∑
i=1

ηi(p)

)
An+1

j = Āj , j = 1, . . . ,m , (13)

where Ai
j and Āj are prescribed values. Since the constraints (13) form a ∇∗-

autoparallel submanifold in Sn, the problem has the unique maximizer owing to

the Pythagorean theorem6,7 in a dually flat space. Defining the Lagrangian

L(p) := ρ(r,p) +

m∑
j=1

βj(Āj − 〈〈Aj〉〉q) ,

we have the following optimality condition from (6) and (7):

∂L

∂ηi
= θi − θi

r
−

m∑
j=1

βj(Ai
j −An+1

j )

= lnq pi + ψ(θ)− θi
r
−

m∑
j=1

βj(Ai
j −An+1

j ) = 0, i = 1, . . . , n ,
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where θi and ηi are, respectively, the ∇- and the ∇∗-affine coordinates of p intro-

duced in Theorem 1, and θi
r
:= θi(r). Hence, θi is affine with respect to βj and the

maximizer p is in the q-exponential family represented in (8). These facts imply

that the set of maximizers forms a ∇-autoparallel submanifold parametrized by βj ,

which are determined by the prescribed values Āj .

Combining this consideration with (12), we see that the following holds:

Corollary 1. Let r be any distribution, and suppose that p0 and p∞ are in the

q-exponential family (8) parametrized by βj as θi =
∑m

j=1(A
i
j −An+1

j )βj + θi
r
, i =

1, . . . , n and θn+1 ≡ 0. The gradient flow (11) with V (p) = −ρ(p∞,p) starting from

p0 converges to p∞ staying on the q-exponential family.

In the above, p0 and p∞ are respectively interpreted as maximizers of −ρ(r,p)
under the constraints (13) with different values of Āj ’s. The corollary claims that

the q-exponential family is an invariant manifold for the transition of distribution

from p0 to p∞ caused by the change of Āj ’s, if the transition dynamics are governed

by the gradient flow.

4.2. Flows of escort transformation

Consider a dynamical system induced by the escort transformation from p to P

defined by (5). When we identify the set of escort distributions En with Sn, the

transformation is regarded to define a flow P (t) on Sn parametrized by t ∈ R:

P
(t)
i =

(pi)
t∑n+1

j=1 (pj)
t
, i = 1, . . . , n+ 1, P (1) = p ∈ Sn , (14)

where p is a fixed probability distribution.

Recalling the standard dually flat structure, which is obtained by limiting q → 1

(or α→ 1) in Proposition 1, we have the corresponding coordinatesc θi
p
:= θi(p) =

ln(pi) − ln(pn+1), i = 1, . . . , n. In this case, if a curve (θi(t)) on Sn is affinely

parametrized by t ∈ R, we call it e-geodesic.7

Since it follows that

θi(t) := θi(P (t)) = lnP
(t)
i − lnP

(t)
n+1 = t(ln pi − ln pn+1) = tθi

p
, i = 1, . . . , n ,

we conclude from a viewpoint of information geometry that the flow of the escort

transformation (14) evolves along the e-geodesic curve that passes p at t = 1.

Note that the arbitrary flows (14) converge to the uniform distribution inde-

pendently of p, when t → 0. On the other hand, when t → ±∞, it converges to a

distribution on the boundary of Sn depending on the maximum or minimum com-

ponents of p. See Ref. 41 as a relevant work. In several literature,42,43 examples of

physical models with a time-evolution of the power index of distribution functions

are reported.

cThese coordinates are called the canonical parameters in statistics literature.
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The above result can be slightly generalized with a projective transformation

Πr : Sn → Sn defined by

p = (pi) 7→ Πr(p) :=

(
ripi∑n+1
i=1 ripi

)
, i = 1, . . . , n+ 1 ,

for a given vector r = (ri) ∈ Rn+1
+ , and the relation with the replicator equation is

elucidated.

Proposition 4. For arbitrary r the projective transformation of the escort flow

given in (14) evolves along the e-geodesic curve that passes r̃ = r/‖r‖1 at t = 0

and Πr(p) at t = 1. This flow evolves along the trajectory of the replicator equation

(10) with constants fi = ln(pi), i = 1, . . . , n+ 1.

Proof. The first statement follows from direct calculation of coordinates θi for the

standard dually flat structure when q → 1 (α → 1):

θi(Πr(P
(t))) = ln(riP

(t)
i )− ln(rn+1P

(t)
n+1) = tθi

p
+ ln(ri/rn+1), i = 1, . . . , n .

To prove the second statement note that that the flow Πr(P
(t)) is a normalization

of a vector y(t), each component of which is yi(t) = ri(pi)
t. Hence, y(t) satisfies

the following linear differential equation:

ẏi = ln(pi)yi, yi(0) = ri, i = 1, . . . , n+ 1 .

By setting xi = yi/‖y‖1, we have

d

dt
ln(xi) = ln(pi)−

1

‖y‖1

n+1∑
j=1

ẏj = ln(pi)−
n+1∑
j=1

xj ln(pj), i = 1, . . . , n+ 1 .

Thus, Πr(P
(t)) is the solution of

ẋi = xi


ln(pi)−

n+1∑
j=1

ln(pj)xj


 , xi(0) =

ri
‖r‖1

, i = 1, . . . , n+ 1 .

This proves the second statement.

5. Concluding Remarks

We have discussed two applications of escort probabilities and the dually flat struc-

ture (h,∇,∇∗) on Sn induced by conformal transformations of the α-geometry.

They are used to new directions except the studies of multifractal or nonextensive

statistical physics.

We first demonstrate a direct application of the conformal flattening to com-

putation of α-Voronoi partitions and α-centroids. Escort probabilities are found to

work as a suitable coordinate system for the purpose. Further, conformal divergence

and projective equivalence of affine connections also play important roles.
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In behavioral analysis of dynamical systems we present the properties of gradient

flows with respect to the conformal metric and discuss a relation with the replicator

equation. Next, we show that the projective transformation of the escort flow is e-

geodesic. This flow describes a time-evolution of the power index of distributions.

Physical interpretation of the obtained conformal structure is another future

research direction.
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17. N. N. Čencov, Statistical Decision Rules and Optimal Inference (AMS, Rhode Island,

1982), [Originally published in Russian (Nauka, Moscow, 1972)].
18. H. Edelsbrunner and R. Seidel, Discrete Comput. Geom. 1 (1986) 25.
19. H. Edelsbrunner, Algorithms in Combinatorial Geometry (Springer-Verlag, 1987).
20. A. Fujiwara and S-I. Amari, Physica D 80 (1995) 317.
21. S. Eguchi, Ann. Stat. 11 (1983) 793.
22. T. Kurose, Math. Z. 203 (1990) 115.
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